aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/tranche and swaption portfolio strategy.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'python/notebooks/tranche and swaption portfolio strategy.ipynb')
-rw-r--r--python/notebooks/tranche and swaption portfolio strategy.ipynb34
1 files changed, 30 insertions, 4 deletions
diff --git a/python/notebooks/tranche and swaption portfolio strategy.ipynb b/python/notebooks/tranche and swaption portfolio strategy.ipynb
index c0355fb0..e3f5ea1f 100644
--- a/python/notebooks/tranche and swaption portfolio strategy.ipynb
+++ b/python/notebooks/tranche and swaption portfolio strategy.ipynb
@@ -14,7 +14,7 @@
"from analytics.scenarios import run_tranche_scenarios, run_portfolio_scenarios, run_tranche_scenarios_rolldown\n",
"from analytics import Swaption, BlackSwaption, CreditIndex, BlackSwaptionVolSurface, Portfolio, ProbSurface\n",
"from analytics import DualCorrTranche\n",
- "from db import dbconn\n",
+ "from utils.db import dbconn\n",
"from datetime import date\n",
"from graphics import plot_color_map\n",
"\n",
@@ -475,7 +475,33 @@
"execution_count": null,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "#Selwood strategy - March 2019, long 20bn tranches, short 12 bn options\n",
+ "index = 'EU'\n",
+ "series = 30\n",
+ "ss = DualCorrTranche(index, series, '5yr', attach=12, detach=100, corr_attach=.53, \n",
+ " corr_detach=.99, tranche_running=100, notional=-20000000000)\n",
+ "index_1 = 'IG'\n",
+ "series_1 = 32\n",
+ "option_delta = CreditIndex(index_1, series_1, '5yr') \n",
+ "option_delta.spread = 66\n",
+ "option1 = BlackSwaption(option_delta, datetime.date(2019, 6, 19), 120, option_type=\"payer\") \n",
+ "option1.sigma = .7\n",
+ "option1.notional = 12_000_000_000 \n",
+ "option1.direction = 'Long' \n",
+ "portf = Portfolio([ss, option1], trade_ids=['ss', 'opt1'])\n",
+ "portf.reset_pv()\n",
+ "spread_shock = np.round(np.arange(-.2, 1, .025), 3)\n",
+ "scens = run_portfolio_scenarios(portf, date_range, params=['pnl', 'delta'],\n",
+ " spread_shock=spread_shock,\n",
+ " vol_shock=vol_shock,\n",
+ " corr_shock=[0],\n",
+ " vol_surface=vol_surface)\n",
+ "\n",
+ "scens = scens.xs((0,0), level=['vol_shock', 'corr_shock'])\n",
+ "pnl = scens.xs('pnl', axis=1, level=1)\n",
+ "delta = scens.xs('delta', axis=1, level=1)\n"
+ ]
}
],
"metadata": {
@@ -494,9 +520,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.1"
+ "version": "3.8.0"
}
},
"nbformat": 4,
- "nbformat_minor": 2
+ "nbformat_minor": 4
}