diff options
Diffstat (limited to 'python/notebooks/tranches numbers.ipynb')
| -rw-r--r-- | python/notebooks/tranches numbers.ipynb | 323 |
1 files changed, 323 insertions, 0 deletions
diff --git a/python/notebooks/tranches numbers.ipynb b/python/notebooks/tranches numbers.ipynb new file mode 100644 index 00000000..71cb44f8 --- /dev/null +++ b/python/notebooks/tranches numbers.ipynb @@ -0,0 +1,323 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib\n", + "import seaborn\n", + "seaborn.mpl.rcParams['figure.figsize'] = (12.0, 8.0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "from ipywidgets import interact\n", + "from collections import OrderedDict" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "SQL_CON = \"postgresql://serenitas_user@debian/serenitasdb\"\n", + "runs = (pd.\n", + " read_sql(\"SELECT DISTINCT index, series, tenor from risk_numbers ORDER BY index, series\", SQL_CON).\n", + " itertuples(index=False, name='run'))\n", + "runs = OrderedDict([(\"%s %s %s\" % (r.index, r.series, r.tenor), (r.index, r.series, r.tenor)) for r in runs])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_sql(\"SELECT * FROM risk_numbers\", SQL_CON, index_col=['date', 'index', 'series', 'tenor'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "risk_numbers = ['skew', 'Dealer Deltas', 'Model Deltas', 'Forward Deltas', 'gammas', 'durations', 'thetas']\n", + "@interact(index=runs, what=risk_numbers)\n", + "def corrplot(index, what):\n", + " selection = df.xs(index, level=[1,2,3], drop_level=True)\n", + " cols = selection.attach.iloc[0]\n", + " cols = [\"{}-{}\".format(a,d) for a, d in zip(cols[:-2], cols[1:-1])]\n", + " selection = selection[what].apply(pd.Series)\n", + " selection.drop(selection.columns[-1], axis=1, inplace=True)\n", + " selection.columns = cols\n", + " selection.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_tranche_quotes(index, series, tenor):\n", + " df = pd.read_sql(\"SELECT * FROM tranche_quotes WHERE index=%s and series=%s and tenor =%s\",\n", + " SQL_CON, params=(index, series, tenor), index_col='quotedate')\n", + " df.sort_index(inplace=True)\n", + " return df\n", + "def get_index_quotes(index, series, tenor):\n", + " df = pd.read_sql(\"SELECT * FROM index_quotes WHERE index=%s and series=%s and tenor=%s\",\n", + " SQL_CON, params = (index, series, tenor), index_col=['date'], parse_dates=['date'])\n", + " df.sort_index(inplace=True)\n", + " return df\n", + "ig25_tranches = get_tranche_quotes('IG', 25, '5yr')\n", + "ig25 = get_index_quotes('IG', 25, '5yr')\n", + "ig25_tranches = ig25_tranches[['attach', 'trancheupfrontmid','indexrefspread','tranchedelta']]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ig25_tranches = ig25_tranches.groupby([pd.TimeGrouper('D', level=0), 'attach']).last().dropna()\n", + "ig25_tranches = ig25_tranches.reset_index('attach', drop=False)\n", + "ig25 = ig25[['closeprice','duration','closespread']]\n", + "ig25_data = ig25_tranches.join(ig25)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ig25_data = ig25_data.assign(tranche_adjusted =\n", + " lambda x: x.trancheupfrontmid - \\\n", + " x.tranchedelta * (x.indexrefspread-x.closespread) * x.duration/100)\n", + "ig25_data = ig25_data.set_index('attach', append=True)\n", + "ig25_data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#compute the accrued\n", + "ig25_data['accrued'] = ig25_data.groupby(level='attach')['tranche_adjusted'].transform(lambda x: x.index.levels[0].to_series().diff().astype('timedelta64[D]')*1/360)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#compute the daily pnl\n", + "ig25_data['index_pnl'] = (ig25_data.groupby(level='attach')['closeprice'].\n", + " apply(lambda x:x.diff()))\n", + "ig25_data['tranche_pnl'] = (ig25_data.groupby(level='attach')['tranche_adjusted'].\n", + " apply(lambda x:-x.diff()))\n", + "for col in ['index_pnl', 'tranche_pnl']:\n", + " ig25_data[col] += ig25_data.accrued" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ig25_data.xs(3, level='attach').plot(x='index_pnl', y='tranche_pnl', kind='scatter')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import statsmodels.api as sm\n", + "import statsmodels.formula.api as smf\n", + "import numpy as np\n", + "model = smf.ols('tranche_pnl~0+index_pnl', data=ig25_data.xs(15, level='attach'))\n", + "results = model.fit()\n", + "results.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def rolling_ols(df, formula, window=20):\n", + " r = []\n", + " for i in range(len(df)-window):\n", + " model = smf.ols(formula, data=df.iloc[i:(20+i),])\n", + " results = model.fit()\n", + " r.append(results.params)\n", + " r = pd.concat(r, axis=1).T\n", + " return r.set_index(df.index[20:])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "rols = rolling_ols(ig25_data, 'tranche_pnl~0+index_pnl+np.square(index_pnl)')\n", + "rols.columns = ['delta','gamma']\n", + "test = rols.join(ig25_data)[['delta','tranchedelta']]\n", + "test.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ig25_data.closespread.apply(np.log).diff().std()*np.sqrt(250)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ig25 = get_index_quotes('IG', 25, '5yr')\n", + "ig25['closespread'].rolling(20).apply(lambda x: np.std(np.diff(np.log(x)))*np.sqrt(250)).plot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ig25 = get_index_quotes('IG', 25, '5yr')\n", + "returns = ig25.closespread.pct_change().dropna()\n", + "returns.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from arch import arch_model\n", + "am = arch_model(returns, mean='ARX', lags=1, vol='GARCH', o=1)\n", + "res = am.fit(update_freq=5)\n", + "res.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "res.plot(annualize='D')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import math\n", + "annualized_vol = res.conditional_volatility * math.sqrt(252)\n", + "annualized_vol.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "returns[returns.abs()>0.04].groupby(pd.TimeGrouper('M')).count()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "returns['2016-03']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ig25.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ig25.index" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pd.read_sql?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} |
