aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks
diff options
context:
space:
mode:
Diffstat (limited to 'python/notebooks')
-rw-r--r--python/notebooks/Reto Report.ipynb27
1 files changed, 23 insertions, 4 deletions
diff --git a/python/notebooks/Reto Report.ipynb b/python/notebooks/Reto Report.ipynb
index 12f3f3af..03e5c06f 100644
--- a/python/notebooks/Reto Report.ipynb
+++ b/python/notebooks/Reto Report.ipynb
@@ -66,6 +66,15 @@
"metadata": {},
"outputs": [],
"source": [
+ "rolling_return"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
"################################### Average Portfolio Sales Turnover - as of last monthend from today\n",
"#(total Bond Sales Proceeds + paydown)/average starting 12 months NAV\n",
"#Actually: Rolling 12 months sum of (total bond sales proceeds + paydown)/monthly NAV\n",
@@ -403,7 +412,7 @@
" params=[position_date, position_date - pd.tseries.offsets.DateOffset(15, \"D\")])\n",
" rmbs_pos = subprime_risk(position_date, dawnconn, mysql_engine, timestamps.iloc[0][0].date())\n",
" clo_pos = clo_risk(position_date, dawnconn, etconn)\n",
- " crt_pos = crt_risk(position_date, dawnconn, mysqlcrt_engine)\n",
+ " crt_pos = crt_risk(position_date, dawnconn, mysqlcrt_engine, model_version = 'hpi5_ir3_btm')\n",
" rmbs_notional = 0\n",
" for pos in [rmbs_pos, crt_pos]:\n",
" rmbs_notional += pos['hy_equiv'].sum() if pos is not None else 0\n",
@@ -445,6 +454,7 @@
"df = get_index_quotes('HY', list(range(on_the_run('HY', spread_date) - 10, on_the_run('HY', spread_date) + 1)),\n",
" tenor=['5yr'], years=5)\n",
"df = df.xs('5yr', level='tenor')['close_spread'].groupby(['date', 'series']).last()\n",
+ "df=df.loc[:'2020-2-28']\n",
"\n",
"widen, tighten = [], []\n",
"#approximately 1,3,6 months move (22 each months)\n",
@@ -492,7 +502,16 @@
"metadata": {},
"outputs": [],
"source": [
- "results.to_clipboard(header=True)"
+ "results"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "results.to_csv('/home/serenitas/edwin/Python/reto_results.csv')"
]
},
{
@@ -505,7 +524,7 @@
"spread_shock = np.round(np.arange(-.2, 1, .05), 3)\n",
"scens = run_portfolio_scenarios(portf, date_range=[pd.Timestamp(spread_date)], params=['pnl', 'delta'],\n",
" spread_shock=spread_shock,\n",
- " vol_shock=[0],\n",
+ " vol_shock=[.5],\n",
" corr_shock=[0],\n",
" vol_surface=vol_surface)\n",
"\n",
@@ -559,7 +578,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.0"
+ "version": "3.8.1"
}
},
"nbformat": 4,