aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks
diff options
context:
space:
mode:
Diffstat (limited to 'python/notebooks')
-rw-r--r--python/notebooks/brinker_reports.ipynb52
1 files changed, 51 insertions, 1 deletions
diff --git a/python/notebooks/brinker_reports.ipynb b/python/notebooks/brinker_reports.ipynb
index 9ea8f5ef..58b8dde7 100644
--- a/python/notebooks/brinker_reports.ipynb
+++ b/python/notebooks/brinker_reports.ipynb
@@ -70,6 +70,56 @@
"brinker_nav = brinker_nav.groupby(pd.Grouper(freq='M')).last()\n",
"turnover = (turnover.sum(axis=1)/brinker_nav.nav).rolling(min(13, len(turnover))-1).sum()"
]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#PNL over different time frames\n",
+ "sql_string = \"SELECT * from bbh_val\"\n",
+ "df = pd.read_sql_query(sql_string, dawn_engine,\n",
+ " parse_dates=['accounting_date'],\n",
+ " index_col = 'accounting_date')\n",
+ "sql_string = \"SELECT * from subscription_and_fee where fund = 'BRINKER'\"\n",
+ "flow = pd.read_sql_query(sql_string, dawn_engine,\n",
+ " parse_dates=['date'],\n",
+ " index_col = 'date')\n",
+ "df = df.groupby('accounting_date').nth(-1)\n",
+ "df = df.merge(flow, how='left', left_index=True, right_index=True)\n",
+ "df.fillna(0, inplace=True)\n",
+ "df['beg_nav'] = df.total_net_assets.shift(1) + df.subscription.shift(1) - df.redemption\n",
+ "df.loc['2019-3-19','beg_nav'] = 110000000\n",
+ "df['ret'] = (df.total_net_assets - df.beg_nav)/df.beg_nav\n",
+ "cum_ret = (df.ret+1).cumprod()\n",
+ "\n",
+ "monthly= cum_ret.groupby(pd.Grouper(freq='M')).nth(-1)\n",
+ "quarterly = cum_ret.groupby(pd.Grouper(freq='Q')).nth(-1)\n",
+ "monthly.pct_change(), quarterly.pct_change()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#PNL breakdown\n",
+ "sql_string = \"SELECT * from bbh_pnl\"\n",
+ "pnl = pd.read_sql_query(sql_string, dawn_engine,\n",
+ " parse_dates=['accounting_date'])\n",
+ "sql_string = \"SELECT * from securities\"\n",
+ "bonds = pd.read_sql_query(sql_string, dawn_engine, index_col = 'cusip')\n",
+ "pnl = pnl.merge(bonds, how='left', left_on='security_id', right_on='cusip')\n",
+ "pnl.loc[(pnl.sub_security_type_code == 'CXT'),'asset_class'] = 'Tranches'\n",
+ "pnl.loc[(pnl.sub_security_type_code == 'CDX'),'asset_class'] = 'Tranches'\n",
+ "pnl.loc[(pnl.sub_security_type_code == 'SWP'),'asset_class'] = 'IR-Hedges'\n",
+ "pnl.asset_class.fillna('Others', inplace=True)\n",
+ "pnl.set_index(['accounting_date', 'asset_class'], inplace=True)\n",
+ "base_change = pnl['base_change_total'].groupby(['accounting_date', 'asset_class']).sum()\n",
+ "base_change.unstack()\n"
+ ]
}
],
"metadata": {
@@ -88,7 +138,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.3"
+ "version": "3.8.1"
}
},
"nbformat": 4,