diff options
Diffstat (limited to 'python/notebooks')
| -rw-r--r-- | python/notebooks/Allocation Reports.ipynb | 2654 |
1 files changed, 2638 insertions, 16 deletions
diff --git a/python/notebooks/Allocation Reports.ipynb b/python/notebooks/Allocation Reports.ipynb index bddcef63..727a1aa8 100644 --- a/python/notebooks/Allocation Reports.ipynb +++ b/python/notebooks/Allocation Reports.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 63, + "execution_count": 37, "metadata": { "collapsed": true }, @@ -10,21 +10,22 @@ "source": [ "import datetime\n", "import pandas.tseries.offsets as off\n", - "import globeop_reports as go" + "import globeop_reports as go\n", + "import pandas as pd" ] }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Timestamp('2017-10-31 00:00:00')" + "Timestamp('2017-11-30 00:00:00')" ] }, - "execution_count": 71, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -39,7 +40,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -822,7 +823,7 @@ { "data": { "text/html": [ - "<img src=\"\" width=\"600\">" + "<img src=\"\" width=\"600\">" ], "text/plain": [ "<IPython.core.display.HTML object>" @@ -833,16 +834,29 @@ } ], "source": [ - "pnl_alloc = go.alloc(report_date, 'pnl')\n", - "go.pnl_alloc_plot(pnl_alloc)" + "pnl_alloc = go.alloc('pnl')\n", + "alloc = pnl_alloc.xs(report_date)\n", + "go.pnl_alloc_plot(alloc)" ] }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 34, "metadata": {}, "outputs": [ { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/edwin/projects/code/python/globeop_reports.py:146: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n", + " \n" + ] + }, + { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", @@ -1622,7 +1636,7 @@ { "data": { "text/html": [ - "<img src=\"\" width=\"800\">" + "<img src=\"\" width=\"800\">" ], "text/plain": [ "<IPython.core.display.HTML object>" @@ -1634,22 +1648,23 @@ ], "source": [ "#Capital Allocation\n", - "cap_alloc = go.alloc(report_date, 'capital')\n", - "go.cap_alloc_plot(cap_alloc)" + "cap_alloc = go.alloc('capital')\n", + "alloc1 = cap_alloc.xs(report_date)\n", + "go.cap_alloc_plot(alloc1)" ] }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.5155553893824326" + "0.507475204467614" ] }, - "execution_count": 68, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -1661,6 +1676,2613 @@ }, { "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style>\n", + " .dataframe thead tr:only-child th {\n", + " text-align: right;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: left;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th>port</th>\n", + " <th>CASH</th>\n", + " <th>CLO</th>\n", + " <th>MORTGAGES</th>\n", + " <th>STRUCTURED</th>\n", + " </tr>\n", + " <tr>\n", + " <th>periodenddate</th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>2013-01-31</th>\n", + " <td>1.0</td>\n", + " <td>NaN</td>\n", + " <td>3.0</td>\n", + " <td>1.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-02-28</th>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>9.0</td>\n", + " <td>3.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-03-31</th>\n", + " <td>1.0</td>\n", + " <td>3.0</td>\n", + " <td>17.0</td>\n", + " <td>2.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-04-30</th>\n", + " <td>1.0</td>\n", + " <td>3.0</td>\n", + " <td>20.0</td>\n", + " <td>2.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-05-31</th>\n", + " <td>1.0</td>\n", + " <td>2.0</td>\n", + " <td>23.0</td>\n", + " <td>2.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-06-30</th>\n", + " <td>1.0</td>\n", + " <td>2.0</td>\n", + " <td>27.0</td>\n", + " <td>4.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-07-31</th>\n", + " <td>1.0</td>\n", + " <td>2.0</td>\n", + " <td>27.0</td>\n", + " <td>4.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-08-31</th>\n", + " <td>1.0</td>\n", + " <td>2.0</td>\n", + " <td>33.0</td>\n", + " <td>4.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-09-30</th>\n", + " <td>1.0</td>\n", + " <td>2.0</td>\n", + " <td>34.0</td>\n", + " <td>4.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-10-31</th>\n", + " <td>1.0</td>\n", + " <td>3.0</td>\n", + " <td>30.0</td>\n", + " <td>4.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-11-30</th>\n", + " <td>1.0</td>\n", + " <td>3.0</td>\n", + " <td>33.0</td>\n", + " <td>4.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-12-31</th>\n", + " <td>1.0</td>\n", + " <td>4.0</td>\n", + " <td>29.0</td>\n", + " <td>4.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-01-31</th>\n", + " <td>1.0</td>\n", + " <td>4.0</td>\n", + " <td>25.0</td>\n", + " <td>4.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-02-28</th>\n", + " <td>1.0</td>\n", + " <td>5.0</td>\n", + " <td>23.0</td>\n", + " <td>5.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-03-31</th>\n", + " <td>1.0</td>\n", + " <td>5.0</td>\n", + " <td>27.0</td>\n", + " <td>5.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-04-30</th>\n", + " <td>1.0</td>\n", + " <td>5.0</td>\n", + " <td>24.0</td>\n", + " <td>5.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-05-31</th>\n", + " <td>1.0</td>\n", + " <td>6.0</td>\n", + " <td>21.0</td>\n", + " <td>5.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-06-30</th>\n", + " <td>1.0</td>\n", + " <td>7.0</td>\n", + " <td>22.0</td>\n", + " <td>7.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-07-31</th>\n", + " <td>1.0</td>\n", + " <td>6.0</td>\n", + " <td>17.0</td>\n", + " <td>6.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-08-31</th>\n", + " <td>1.0</td>\n", + " <td>6.0</td>\n", + " <td>16.0</td>\n", + " <td>6.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-09-30</th>\n", + " <td>1.0</td>\n", + " <td>6.0</td>\n", + " <td>15.0</td>\n", + " <td>6.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-10-31</th>\n", + " <td>1.0</td>\n", + " <td>6.0</td>\n", + " <td>18.0</td>\n", + " <td>7.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-11-30</th>\n", + " <td>1.0</td>\n", + " <td>6.0</td>\n", + " <td>19.0</td>\n", + " <td>7.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-12-31</th>\n", + " <td>1.0</td>\n", + " <td>6.0</td>\n", + " <td>18.0</td>\n", + " <td>8.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-01-31</th>\n", + " <td>1.0</td>\n", + " <td>6.0</td>\n", + " <td>23.0</td>\n", + " <td>9.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-02-28</th>\n", + " <td>1.0</td>\n", + " <td>6.0</td>\n", + " <td>27.0</td>\n", + " <td>9.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-03-31</th>\n", + " <td>1.0</td>\n", + " <td>6.0</td>\n", + " <td>26.0</td>\n", + " <td>10.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-04-30</th>\n", + " <td>1.0</td>\n", + " <td>6.0</td>\n", + " <td>35.0</td>\n", + " <td>10.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-05-31</th>\n", + " <td>1.0</td>\n", + " <td>6.0</td>\n", + " <td>43.0</td>\n", + " <td>10.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-06-30</th>\n", + " <td>1.0</td>\n", + " <td>7.0</td>\n", + " <td>40.0</td>\n", + " <td>14.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-07-31</th>\n", + " <td>1.0</td>\n", + " <td>7.0</td>\n", + " <td>45.0</td>\n", + " <td>14.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-08-31</th>\n", + " <td>1.0</td>\n", + " <td>7.0</td>\n", + " <td>45.0</td>\n", + " <td>14.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-09-30</th>\n", + " <td>1.0</td>\n", + " <td>7.0</td>\n", + " <td>56.0</td>\n", + " <td>14.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-10-31</th>\n", + " <td>1.0</td>\n", + " <td>7.0</td>\n", + " <td>56.0</td>\n", + " <td>14.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-11-30</th>\n", + " <td>1.0</td>\n", + " <td>7.0</td>\n", + " <td>54.0</td>\n", + " <td>14.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-12-31</th>\n", + " <td>1.0</td>\n", + " <td>7.0</td>\n", + " <td>54.0</td>\n", + " <td>14.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-01-31</th>\n", + " <td>1.0</td>\n", + " <td>9.0</td>\n", + " <td>60.0</td>\n", + " <td>14.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-02-29</th>\n", + " <td>1.0</td>\n", + " <td>9.0</td>\n", + " <td>59.0</td>\n", + " <td>14.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-03-31</th>\n", + " <td>1.0</td>\n", + " <td>9.0</td>\n", + " <td>60.0</td>\n", + " <td>14.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-04-30</th>\n", + " <td>1.0</td>\n", + " <td>7.0</td>\n", + " <td>64.0</td>\n", + " <td>14.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-05-31</th>\n", + " <td>1.0</td>\n", + " <td>5.0</td>\n", + " <td>65.0</td>\n", + " <td>14.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-06-30</th>\n", + " <td>1.0</td>\n", + " <td>5.0</td>\n", + " <td>67.0</td>\n", + " <td>14.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-07-31</th>\n", + " <td>1.0</td>\n", + " <td>5.0</td>\n", + " <td>67.0</td>\n", + " <td>14.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-08-31</th>\n", + " <td>1.0</td>\n", + " <td>3.0</td>\n", + " <td>58.0</td>\n", + " <td>14.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-09-30</th>\n", + " <td>1.0</td>\n", + " <td>2.0</td>\n", + " <td>53.0</td>\n", + " <td>14.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-10-31</th>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>64.0</td>\n", + " <td>14.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-11-30</th>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>60.0</td>\n", + " <td>14.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-12-31</th>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>63.0</td>\n", + " <td>14.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-01-31</th>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>69.0</td>\n", + " <td>12.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-02-28</th>\n", + " <td>1.0</td>\n", + " <td>NaN</td>\n", + " <td>66.0</td>\n", + " <td>12.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-03-31</th>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>69.0</td>\n", + " <td>11.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-04-30</th>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>68.0</td>\n", + " <td>11.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-05-31</th>\n", + " <td>1.0</td>\n", + " <td>NaN</td>\n", + " <td>63.0</td>\n", + " <td>11.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-06-30</th>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>64.0</td>\n", + " <td>7.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-07-31</th>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>64.0</td>\n", + " <td>7.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-08-31</th>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>63.0</td>\n", + " <td>7.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-09-30</th>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>68.0</td>\n", + " <td>7.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-10-31</th>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>66.0</td>\n", + " <td>7.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-11-30</th>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>65.0</td>\n", + " <td>7.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-12-31</th>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>65.0</td>\n", + " <td>7.0</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + "port CASH CLO MORTGAGES STRUCTURED\n", + "periodenddate \n", + "2013-01-31 1.0 NaN 3.0 1.0\n", + "2013-02-28 1.0 1.0 9.0 3.0\n", + "2013-03-31 1.0 3.0 17.0 2.0\n", + "2013-04-30 1.0 3.0 20.0 2.0\n", + "2013-05-31 1.0 2.0 23.0 2.0\n", + "2013-06-30 1.0 2.0 27.0 4.0\n", + "2013-07-31 1.0 2.0 27.0 4.0\n", + "2013-08-31 1.0 2.0 33.0 4.0\n", + "2013-09-30 1.0 2.0 34.0 4.0\n", + "2013-10-31 1.0 3.0 30.0 4.0\n", + "2013-11-30 1.0 3.0 33.0 4.0\n", + "2013-12-31 1.0 4.0 29.0 4.0\n", + "2014-01-31 1.0 4.0 25.0 4.0\n", + "2014-02-28 1.0 5.0 23.0 5.0\n", + "2014-03-31 1.0 5.0 27.0 5.0\n", + "2014-04-30 1.0 5.0 24.0 5.0\n", + "2014-05-31 1.0 6.0 21.0 5.0\n", + "2014-06-30 1.0 7.0 22.0 7.0\n", + "2014-07-31 1.0 6.0 17.0 6.0\n", + "2014-08-31 1.0 6.0 16.0 6.0\n", + "2014-09-30 1.0 6.0 15.0 6.0\n", + "2014-10-31 1.0 6.0 18.0 7.0\n", + "2014-11-30 1.0 6.0 19.0 7.0\n", + "2014-12-31 1.0 6.0 18.0 8.0\n", + "2015-01-31 1.0 6.0 23.0 9.0\n", + "2015-02-28 1.0 6.0 27.0 9.0\n", + "2015-03-31 1.0 6.0 26.0 10.0\n", + "2015-04-30 1.0 6.0 35.0 10.0\n", + "2015-05-31 1.0 6.0 43.0 10.0\n", + "2015-06-30 1.0 7.0 40.0 14.0\n", + "2015-07-31 1.0 7.0 45.0 14.0\n", + "2015-08-31 1.0 7.0 45.0 14.0\n", + "2015-09-30 1.0 7.0 56.0 14.0\n", + "2015-10-31 1.0 7.0 56.0 14.0\n", + "2015-11-30 1.0 7.0 54.0 14.0\n", + "2015-12-31 1.0 7.0 54.0 14.0\n", + "2016-01-31 1.0 9.0 60.0 14.0\n", + "2016-02-29 1.0 9.0 59.0 14.0\n", + "2016-03-31 1.0 9.0 60.0 14.0\n", + "2016-04-30 1.0 7.0 64.0 14.0\n", + "2016-05-31 1.0 5.0 65.0 14.0\n", + "2016-06-30 1.0 5.0 67.0 14.0\n", + "2016-07-31 1.0 5.0 67.0 14.0\n", + "2016-08-31 1.0 3.0 58.0 14.0\n", + "2016-09-30 1.0 2.0 53.0 14.0\n", + "2016-10-31 1.0 1.0 64.0 14.0\n", + "2016-11-30 1.0 1.0 60.0 14.0\n", + "2016-12-31 1.0 1.0 63.0 14.0\n", + "2017-01-31 1.0 1.0 69.0 12.0\n", + "2017-02-28 1.0 NaN 66.0 12.0\n", + "2017-03-31 1.0 1.0 69.0 11.0\n", + "2017-04-30 1.0 1.0 68.0 11.0\n", + "2017-05-31 1.0 NaN 63.0 11.0\n", + "2017-06-30 1.0 1.0 64.0 7.0\n", + "2017-07-31 1.0 1.0 64.0 7.0\n", + "2017-08-31 1.0 1.0 63.0 7.0\n", + "2017-09-30 1.0 1.0 68.0 7.0\n", + "2017-10-31 1.0 1.0 66.0 7.0\n", + "2017-11-30 1.0 1.0 65.0 7.0\n", + "2017-12-31 1.0 1.0 65.0 7.0" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Number of bond positions by strategy by month - and copy to clipboard\n", + "go.num_bond_by_strat()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style>\n", + " .dataframe thead tr:only-child th {\n", + " text-align: right;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: left;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th>buysell</th>\n", + " <th>False</th>\n", + " <th>True</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>2013-01-31</th>\n", + " <td>NaN</td>\n", + " <td>4.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-02-28</th>\n", + " <td>3.0</td>\n", + " <td>17.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-03-31</th>\n", + " <td>1.0</td>\n", + " <td>11.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-04-30</th>\n", + " <td>6.0</td>\n", + " <td>10.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-05-31</th>\n", + " <td>12.0</td>\n", + " <td>15.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-06-30</th>\n", + " <td>11.0</td>\n", + " <td>17.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-07-31</th>\n", + " <td>6.0</td>\n", + " <td>7.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-08-31</th>\n", + " <td>4.0</td>\n", + " <td>10.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-09-30</th>\n", + " <td>13.0</td>\n", + " <td>15.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-10-31</th>\n", + " <td>10.0</td>\n", + " <td>10.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-11-30</th>\n", + " <td>6.0</td>\n", + " <td>10.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-12-31</th>\n", + " <td>6.0</td>\n", + " <td>4.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-01-31</th>\n", + " <td>10.0</td>\n", + " <td>6.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-02-28</th>\n", + " <td>6.0</td>\n", + " <td>7.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-03-31</th>\n", + " <td>2.0</td>\n", + " <td>7.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-04-30</th>\n", + " <td>4.0</td>\n", + " <td>2.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-05-31</th>\n", + " <td>6.0</td>\n", + " <td>6.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-06-30</th>\n", + " <td>2.0</td>\n", + " <td>5.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-07-31</th>\n", + " <td>6.0</td>\n", + " <td>1.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-08-31</th>\n", + " <td>3.0</td>\n", + " <td>2.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-09-30</th>\n", + " <td>6.0</td>\n", + " <td>5.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-10-31</th>\n", + " <td>4.0</td>\n", + " <td>7.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-11-30</th>\n", + " <td>2.0</td>\n", + " <td>3.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-12-31</th>\n", + " <td>4.0</td>\n", + " <td>4.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-01-31</th>\n", + " <td>NaN</td>\n", + " <td>9.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-02-28</th>\n", + " <td>5.0</td>\n", + " <td>10.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-03-31</th>\n", + " <td>5.0</td>\n", + " <td>6.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-04-30</th>\n", + " <td>3.0</td>\n", + " <td>15.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-05-31</th>\n", + " <td>5.0</td>\n", + " <td>13.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-06-30</th>\n", + " <td>8.0</td>\n", + " <td>13.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-07-31</th>\n", + " <td>4.0</td>\n", + " <td>12.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-08-31</th>\n", + " <td>8.0</td>\n", + " <td>9.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-09-30</th>\n", + " <td>2.0</td>\n", + " <td>13.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-10-31</th>\n", + " <td>12.0</td>\n", + " <td>8.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-11-30</th>\n", + " <td>5.0</td>\n", + " <td>3.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-12-31</th>\n", + " <td>3.0</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-01-31</th>\n", + " <td>3.0</td>\n", + " <td>12.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-02-29</th>\n", + " <td>2.0</td>\n", + " <td>2.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-03-31</th>\n", + " <td>4.0</td>\n", + " <td>5.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-04-30</th>\n", + " <td>4.0</td>\n", + " <td>7.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-05-31</th>\n", + " <td>2.0</td>\n", + " <td>4.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-06-30</th>\n", + " <td>6.0</td>\n", + " <td>10.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-07-31</th>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-08-31</th>\n", + " <td>17.0</td>\n", + " <td>11.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-09-30</th>\n", + " <td>8.0</td>\n", + " <td>3.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-10-31</th>\n", + " <td>1.0</td>\n", + " <td>13.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-11-30</th>\n", + " <td>6.0</td>\n", + " <td>3.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-12-31</th>\n", + " <td>1.0</td>\n", + " <td>4.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-01-31</th>\n", + " <td>NaN</td>\n", + " <td>7.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-02-28</th>\n", + " <td>5.0</td>\n", + " <td>2.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-03-31</th>\n", + " <td>1.0</td>\n", + " <td>7.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-04-30</th>\n", + " <td>3.0</td>\n", + " <td>3.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-05-31</th>\n", + " <td>7.0</td>\n", + " <td>3.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-06-30</th>\n", + " <td>3.0</td>\n", + " <td>5.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-07-31</th>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-08-31</th>\n", + " <td>3.0</td>\n", + " <td>3.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-09-30</th>\n", + " <td>NaN</td>\n", + " <td>5.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-10-31</th>\n", + " <td>3.0</td>\n", + " <td>4.0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-11-30</th>\n", + " <td>3.0</td>\n", + " <td>2.0</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + "buysell False True \n", + "2013-01-31 NaN 4.0\n", + "2013-02-28 3.0 17.0\n", + "2013-03-31 1.0 11.0\n", + "2013-04-30 6.0 10.0\n", + "2013-05-31 12.0 15.0\n", + "2013-06-30 11.0 17.0\n", + "2013-07-31 6.0 7.0\n", + "2013-08-31 4.0 10.0\n", + "2013-09-30 13.0 15.0\n", + "2013-10-31 10.0 10.0\n", + "2013-11-30 6.0 10.0\n", + "2013-12-31 6.0 4.0\n", + "2014-01-31 10.0 6.0\n", + "2014-02-28 6.0 7.0\n", + "2014-03-31 2.0 7.0\n", + "2014-04-30 4.0 2.0\n", + "2014-05-31 6.0 6.0\n", + "2014-06-30 2.0 5.0\n", + "2014-07-31 6.0 1.0\n", + "2014-08-31 3.0 2.0\n", + "2014-09-30 6.0 5.0\n", + "2014-10-31 4.0 7.0\n", + "2014-11-30 2.0 3.0\n", + "2014-12-31 4.0 4.0\n", + "2015-01-31 NaN 9.0\n", + "2015-02-28 5.0 10.0\n", + "2015-03-31 5.0 6.0\n", + "2015-04-30 3.0 15.0\n", + "2015-05-31 5.0 13.0\n", + "2015-06-30 8.0 13.0\n", + "2015-07-31 4.0 12.0\n", + "2015-08-31 8.0 9.0\n", + "2015-09-30 2.0 13.0\n", + "2015-10-31 12.0 8.0\n", + "2015-11-30 5.0 3.0\n", + "2015-12-31 3.0 NaN\n", + "2016-01-31 3.0 12.0\n", + "2016-02-29 2.0 2.0\n", + "2016-03-31 4.0 5.0\n", + "2016-04-30 4.0 7.0\n", + "2016-05-31 2.0 4.0\n", + "2016-06-30 6.0 10.0\n", + "2016-07-31 0.0 0.0\n", + "2016-08-31 17.0 11.0\n", + "2016-09-30 8.0 3.0\n", + "2016-10-31 1.0 13.0\n", + "2016-11-30 6.0 3.0\n", + "2016-12-31 1.0 4.0\n", + "2017-01-31 NaN 7.0\n", + "2017-02-28 5.0 2.0\n", + "2017-03-31 1.0 7.0\n", + "2017-04-30 3.0 3.0\n", + "2017-05-31 7.0 3.0\n", + "2017-06-30 3.0 5.0\n", + "2017-07-31 1.0 1.0\n", + "2017-08-31 3.0 3.0\n", + "2017-09-30 NaN 5.0\n", + "2017-10-31 3.0 4.0\n", + "2017-11-30 3.0 2.0" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Number of bond trades by direction by month - and copy to clipboard\n", + "go.num_bond_trades()" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "df = cap_alloc.endbooknav.groupby('periodenddate').apply(lambda x: x/x.sum())\n", + "df = df.unstack().groupby(pd.TimeGrouper('M')).apply(lambda df: df.loc[df.index[-1]])\n", + "df = go.shift_cash(datetime.date(2017,11,30), -2096454, df, 'Curve')\n", + "temp = df.iloc[-1].sort_values(ascending=False)\n", + "df = df.reindex_axis(temp.index, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " this.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overriden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"1000\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax = go.cap_alloc_plot(df[:-1])\n", + "lgd = ax.legend(loc='lower center', bbox_to_anchor=(0.5, -0.3), ncol=4)\n", + "ax.figure.savefig(\"/home/serenitas/edwin/PythonGraphs/cap_alloc_1.png\", bbox_extra_artists=(lgd,), bbox_inches='tight')" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style>\n", + " .dataframe thead tr:only-child th {\n", + " text-align: right;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: left;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th>capital</th>\n", + " <th>RMBS Bonds</th>\n", + " <th>Cash</th>\n", + " <th>Tranches</th>\n", + " <th>RMBS Credit Hedges</th>\n", + " <th>RMBS Rates Hedges</th>\n", + " <th>CLO Bond</th>\n", + " <th>CSO Bond</th>\n", + " <th>Curve</th>\n", + " </tr>\n", + " <tr>\n", + " <th>periodenddate</th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>2013-01-31</th>\n", + " <td>0.430710</td>\n", + " <td>0.007972</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.561318</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-02-28</th>\n", + " <td>0.176536</td>\n", + " <td>0.367836</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.455628</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-03-31</th>\n", + " <td>0.258533</td>\n", + " <td>0.130804</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.228118</td>\n", + " <td>0.382546</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-04-30</th>\n", + " <td>0.380844</td>\n", + " <td>0.031830</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.199250</td>\n", + " <td>0.388075</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-05-31</th>\n", + " <td>0.467674</td>\n", + " <td>0.042528</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.161451</td>\n", + " <td>0.328347</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-06-30</th>\n", + " <td>0.488230</td>\n", + " <td>0.060871</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.107800</td>\n", + " <td>0.343099</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-07-31</th>\n", + " <td>0.518012</td>\n", + " <td>0.033196</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.107431</td>\n", + " <td>0.341361</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-08-31</th>\n", + " <td>0.446132</td>\n", + " <td>0.110933</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.106167</td>\n", + " <td>0.336767</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-09-30</th>\n", + " <td>0.405778</td>\n", + " <td>0.139638</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.094275</td>\n", + " <td>0.360308</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-10-31</th>\n", + " <td>0.383202</td>\n", + " <td>0.149871</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.129174</td>\n", + " <td>0.337753</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-11-30</th>\n", + " <td>0.479083</td>\n", + " <td>0.057664</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.127640</td>\n", + " <td>0.335614</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2013-12-31</th>\n", + " <td>0.485006</td>\n", + " <td>0.051674</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.130285</td>\n", + " <td>0.333034</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-01-31</th>\n", + " <td>0.491939</td>\n", + " <td>0.054231</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.128957</td>\n", + " <td>0.324872</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-02-28</th>\n", + " <td>0.423049</td>\n", + " <td>0.088724</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.167632</td>\n", + " <td>0.320596</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-03-31</th>\n", + " <td>0.483410</td>\n", + " <td>0.044299</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.166302</td>\n", + " <td>0.305989</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-04-30</th>\n", + " <td>0.360606</td>\n", + " <td>0.280927</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.164339</td>\n", + " <td>0.194128</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-05-31</th>\n", + " <td>0.304159</td>\n", + " <td>0.315501</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.195227</td>\n", + " <td>0.185113</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-06-30</th>\n", + " <td>0.361980</td>\n", + " <td>0.094687</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.333131</td>\n", + " <td>0.210202</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-07-31</th>\n", + " <td>0.225219</td>\n", + " <td>0.251357</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.301706</td>\n", + " <td>0.221717</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-08-31</th>\n", + " <td>0.304764</td>\n", + " <td>0.174983</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.299244</td>\n", + " <td>0.221009</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-09-30</th>\n", + " <td>0.434793</td>\n", + " <td>0.034651</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.304909</td>\n", + " <td>0.225647</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-10-31</th>\n", + " <td>0.381047</td>\n", + " <td>0.116936</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.288351</td>\n", + " <td>0.213666</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-11-30</th>\n", + " <td>0.360866</td>\n", + " <td>0.266194</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.287936</td>\n", + " <td>0.085004</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2014-12-31</th>\n", + " <td>0.376919</td>\n", + " <td>0.185772</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.288473</td>\n", + " <td>0.148835</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-01-31</th>\n", + " <td>0.449420</td>\n", + " <td>0.093696</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.300610</td>\n", + " <td>0.156273</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-02-28</th>\n", + " <td>0.471921</td>\n", + " <td>0.114743</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.272051</td>\n", + " <td>0.141285</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-03-31</th>\n", + " <td>0.383291</td>\n", + " <td>0.205980</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.280802</td>\n", + " <td>0.129926</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-04-30</th>\n", + " <td>0.458701</td>\n", + " <td>0.247187</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.200670</td>\n", + " <td>0.093442</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-05-31</th>\n", + " <td>0.464610</td>\n", + " <td>0.242466</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.200025</td>\n", + " <td>0.092900</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-06-30</th>\n", + " <td>0.523622</td>\n", + " <td>0.051527</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.282668</td>\n", + " <td>0.142183</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-07-31</th>\n", + " <td>0.459878</td>\n", + " <td>0.104380</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.283042</td>\n", + " <td>0.152700</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-08-31</th>\n", + " <td>0.429859</td>\n", + " <td>0.096180</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.329721</td>\n", + " <td>0.144240</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-09-30</th>\n", + " <td>0.453848</td>\n", + " <td>0.059773</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.020528</td>\n", + " <td>0.330706</td>\n", + " <td>0.135146</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-10-31</th>\n", + " <td>0.468953</td>\n", + " <td>0.023870</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.021436</td>\n", + " <td>0.344366</td>\n", + " <td>0.141375</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-11-30</th>\n", + " <td>0.424273</td>\n", + " <td>0.075654</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.021461</td>\n", + " <td>0.342481</td>\n", + " <td>0.136131</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2015-12-31</th>\n", + " <td>0.405524</td>\n", + " <td>0.091296</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.026637</td>\n", + " <td>0.339917</td>\n", + " <td>0.136626</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-01-31</th>\n", + " <td>0.414662</td>\n", + " <td>0.006686</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.027260</td>\n", + " <td>0.412689</td>\n", + " <td>0.138703</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-02-29</th>\n", + " <td>0.435095</td>\n", + " <td>0.030536</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.025918</td>\n", + " <td>0.376846</td>\n", + " <td>0.131605</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-03-31</th>\n", + " <td>0.411884</td>\n", + " <td>0.051062</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.025431</td>\n", + " <td>0.380498</td>\n", + " <td>0.131125</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-04-30</th>\n", + " <td>0.432588</td>\n", + " <td>0.194329</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.025059</td>\n", + " <td>0.214491</td>\n", + " <td>0.133534</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-05-31</th>\n", + " <td>0.445444</td>\n", + " <td>0.147014</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.022001</td>\n", + " <td>0.251350</td>\n", + " <td>0.134191</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-06-30</th>\n", + " <td>0.457027</td>\n", + " <td>0.133422</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.021101</td>\n", + " <td>0.250804</td>\n", + " <td>0.137646</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-07-31</th>\n", + " <td>0.452871</td>\n", + " <td>0.104486</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.051647</td>\n", + " <td>0.251745</td>\n", + " <td>0.139252</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-08-31</th>\n", + " <td>0.405121</td>\n", + " <td>0.267507</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.050026</td>\n", + " <td>0.132435</td>\n", + " <td>0.144912</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-09-30</th>\n", + " <td>0.388695</td>\n", + " <td>0.303241</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.048914</td>\n", + " <td>0.108794</td>\n", + " <td>0.150356</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-10-31</th>\n", + " <td>0.405860</td>\n", + " <td>0.294078</td>\n", + " <td>0.017006</td>\n", + " <td>0.046529</td>\n", + " <td>0.041718</td>\n", + " <td>0.055267</td>\n", + " <td>0.132508</td>\n", + " <td>0.007034</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-11-30</th>\n", + " <td>0.379328</td>\n", + " <td>0.365734</td>\n", + " <td>0.000000</td>\n", + " <td>0.021073</td>\n", + " <td>0.049094</td>\n", + " <td>0.052696</td>\n", + " <td>0.128386</td>\n", + " <td>0.003689</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2016-12-31</th>\n", + " <td>0.367856</td>\n", + " <td>0.396823</td>\n", + " <td>NaN</td>\n", + " <td>0.018758</td>\n", + " <td>0.029970</td>\n", + " <td>0.053172</td>\n", + " <td>0.128509</td>\n", + " <td>0.004911</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-01-31</th>\n", + " <td>0.563245</td>\n", + " <td>0.295935</td>\n", + " <td>NaN</td>\n", + " <td>0.024109</td>\n", + " <td>0.028793</td>\n", + " <td>0.052865</td>\n", + " <td>0.029943</td>\n", + " <td>0.005110</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-02-28</th>\n", + " <td>0.597854</td>\n", + " <td>0.326450</td>\n", + " <td>NaN</td>\n", + " <td>0.021237</td>\n", + " <td>0.023703</td>\n", + " <td>0.000000</td>\n", + " <td>0.025781</td>\n", + " <td>0.004976</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-03-31</th>\n", + " <td>0.736444</td>\n", + " <td>0.180335</td>\n", + " <td>NaN</td>\n", + " <td>0.027095</td>\n", + " <td>0.021851</td>\n", + " <td>0.023780</td>\n", + " <td>0.004496</td>\n", + " <td>0.006000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-04-30</th>\n", + " <td>0.818492</td>\n", + " <td>0.093116</td>\n", + " <td>NaN</td>\n", + " <td>0.028271</td>\n", + " <td>0.023256</td>\n", + " <td>0.026483</td>\n", + " <td>0.003744</td>\n", + " <td>0.006638</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-05-31</th>\n", + " <td>0.736636</td>\n", + " <td>0.189324</td>\n", + " <td>NaN</td>\n", + " <td>0.027305</td>\n", + " <td>0.020525</td>\n", + " <td>NaN</td>\n", + " <td>0.004466</td>\n", + " <td>0.021745</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-06-30</th>\n", + " <td>0.742377</td>\n", + " <td>0.149576</td>\n", + " <td>NaN</td>\n", + " <td>0.028228</td>\n", + " <td>0.018609</td>\n", + " <td>0.018365</td>\n", + " <td>0.003300</td>\n", + " <td>0.039545</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-07-31</th>\n", + " <td>0.809887</td>\n", + " <td>0.084711</td>\n", + " <td>NaN</td>\n", + " <td>0.027730</td>\n", + " <td>0.018896</td>\n", + " <td>0.019405</td>\n", + " <td>0.003447</td>\n", + " <td>0.035925</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-08-31</th>\n", + " <td>0.839832</td>\n", + " <td>0.061176</td>\n", + " <td>NaN</td>\n", + " <td>0.022905</td>\n", + " <td>0.018036</td>\n", + " <td>0.018824</td>\n", + " <td>0.003345</td>\n", + " <td>0.035882</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-09-30</th>\n", + " <td>0.788294</td>\n", + " <td>0.143878</td>\n", + " <td>NaN</td>\n", + " <td>0.030855</td>\n", + " <td>0.015945</td>\n", + " <td>0.016950</td>\n", + " <td>0.003242</td>\n", + " <td>0.000835</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-10-31</th>\n", + " <td>0.789222</td>\n", + " <td>0.091395</td>\n", + " <td>0.038326</td>\n", + " <td>0.027148</td>\n", + " <td>0.016110</td>\n", + " <td>0.007972</td>\n", + " <td>0.003367</td>\n", + " <td>0.026459</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-11-30</th>\n", + " <td>0.788009</td>\n", + " <td>0.105194</td>\n", + " <td>0.033814</td>\n", + " <td>0.023952</td>\n", + " <td>0.014214</td>\n", + " <td>0.007050</td>\n", + " <td>0.002972</td>\n", + " <td>0.024794</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2017-12-31</th>\n", + " <td>0.755255</td>\n", + " <td>0.182248</td>\n", + " <td>0.032354</td>\n", + " <td>0.022918</td>\n", + " <td>0.013600</td>\n", + " <td>0.006752</td>\n", + " <td>0.002844</td>\n", + " <td>-0.015971</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + "capital RMBS Bonds Cash Tranches RMBS Credit Hedges \\\n", + "periodenddate \n", + "2013-01-31 0.430710 0.007972 NaN NaN \n", + "2013-02-28 0.176536 0.367836 NaN NaN \n", + "2013-03-31 0.258533 0.130804 NaN NaN \n", + "2013-04-30 0.380844 0.031830 NaN NaN \n", + "2013-05-31 0.467674 0.042528 NaN NaN \n", + "2013-06-30 0.488230 0.060871 NaN NaN \n", + "2013-07-31 0.518012 0.033196 NaN NaN \n", + "2013-08-31 0.446132 0.110933 NaN NaN \n", + "2013-09-30 0.405778 0.139638 NaN NaN \n", + "2013-10-31 0.383202 0.149871 NaN NaN \n", + "2013-11-30 0.479083 0.057664 NaN NaN \n", + "2013-12-31 0.485006 0.051674 NaN NaN \n", + "2014-01-31 0.491939 0.054231 NaN NaN \n", + "2014-02-28 0.423049 0.088724 NaN NaN \n", + "2014-03-31 0.483410 0.044299 NaN NaN \n", + "2014-04-30 0.360606 0.280927 NaN NaN \n", + "2014-05-31 0.304159 0.315501 NaN NaN \n", + "2014-06-30 0.361980 0.094687 NaN NaN \n", + "2014-07-31 0.225219 0.251357 NaN NaN \n", + "2014-08-31 0.304764 0.174983 NaN NaN \n", + "2014-09-30 0.434793 0.034651 NaN NaN \n", + "2014-10-31 0.381047 0.116936 NaN NaN \n", + "2014-11-30 0.360866 0.266194 NaN NaN \n", + "2014-12-31 0.376919 0.185772 NaN NaN \n", + "2015-01-31 0.449420 0.093696 NaN NaN \n", + "2015-02-28 0.471921 0.114743 NaN NaN \n", + "2015-03-31 0.383291 0.205980 NaN NaN \n", + "2015-04-30 0.458701 0.247187 NaN NaN \n", + "2015-05-31 0.464610 0.242466 NaN NaN \n", + "2015-06-30 0.523622 0.051527 NaN NaN \n", + "2015-07-31 0.459878 0.104380 NaN NaN \n", + "2015-08-31 0.429859 0.096180 NaN NaN \n", + "2015-09-30 0.453848 0.059773 NaN NaN \n", + "2015-10-31 0.468953 0.023870 NaN NaN \n", + "2015-11-30 0.424273 0.075654 NaN NaN \n", + "2015-12-31 0.405524 0.091296 NaN NaN \n", + "2016-01-31 0.414662 0.006686 NaN NaN \n", + "2016-02-29 0.435095 0.030536 NaN NaN \n", + "2016-03-31 0.411884 0.051062 NaN NaN \n", + "2016-04-30 0.432588 0.194329 NaN NaN \n", + "2016-05-31 0.445444 0.147014 NaN NaN \n", + "2016-06-30 0.457027 0.133422 NaN NaN \n", + "2016-07-31 0.452871 0.104486 NaN NaN \n", + "2016-08-31 0.405121 0.267507 NaN NaN \n", + "2016-09-30 0.388695 0.303241 NaN NaN \n", + "2016-10-31 0.405860 0.294078 0.017006 0.046529 \n", + "2016-11-30 0.379328 0.365734 0.000000 0.021073 \n", + "2016-12-31 0.367856 0.396823 NaN 0.018758 \n", + "2017-01-31 0.563245 0.295935 NaN 0.024109 \n", + "2017-02-28 0.597854 0.326450 NaN 0.021237 \n", + "2017-03-31 0.736444 0.180335 NaN 0.027095 \n", + "2017-04-30 0.818492 0.093116 NaN 0.028271 \n", + "2017-05-31 0.736636 0.189324 NaN 0.027305 \n", + "2017-06-30 0.742377 0.149576 NaN 0.028228 \n", + "2017-07-31 0.809887 0.084711 NaN 0.027730 \n", + "2017-08-31 0.839832 0.061176 NaN 0.022905 \n", + "2017-09-30 0.788294 0.143878 NaN 0.030855 \n", + "2017-10-31 0.789222 0.091395 0.038326 0.027148 \n", + "2017-11-30 0.788009 0.105194 0.033814 0.023952 \n", + "2017-12-31 0.755255 0.182248 0.032354 0.022918 \n", + "\n", + "capital RMBS Rates Hedges CLO Bond CSO Bond Curve \n", + "periodenddate \n", + "2013-01-31 NaN NaN 0.561318 NaN \n", + "2013-02-28 NaN NaN 0.455628 NaN \n", + "2013-03-31 NaN 0.228118 0.382546 NaN \n", + "2013-04-30 NaN 0.199250 0.388075 NaN \n", + "2013-05-31 NaN 0.161451 0.328347 NaN \n", + "2013-06-30 NaN 0.107800 0.343099 NaN \n", + "2013-07-31 NaN 0.107431 0.341361 NaN \n", + "2013-08-31 NaN 0.106167 0.336767 NaN \n", + "2013-09-30 NaN 0.094275 0.360308 NaN \n", + "2013-10-31 NaN 0.129174 0.337753 NaN \n", + "2013-11-30 NaN 0.127640 0.335614 NaN \n", + "2013-12-31 NaN 0.130285 0.333034 NaN \n", + "2014-01-31 NaN 0.128957 0.324872 NaN \n", + "2014-02-28 NaN 0.167632 0.320596 NaN \n", + "2014-03-31 NaN 0.166302 0.305989 NaN \n", + "2014-04-30 NaN 0.164339 0.194128 NaN \n", + "2014-05-31 NaN 0.195227 0.185113 NaN \n", + "2014-06-30 NaN 0.333131 0.210202 NaN \n", + "2014-07-31 NaN 0.301706 0.221717 NaN \n", + "2014-08-31 NaN 0.299244 0.221009 NaN \n", + "2014-09-30 NaN 0.304909 0.225647 NaN \n", + "2014-10-31 NaN 0.288351 0.213666 NaN \n", + "2014-11-30 NaN 0.287936 0.085004 NaN \n", + "2014-12-31 NaN 0.288473 0.148835 NaN \n", + "2015-01-31 NaN 0.300610 0.156273 NaN \n", + "2015-02-28 NaN 0.272051 0.141285 NaN \n", + "2015-03-31 NaN 0.280802 0.129926 NaN \n", + "2015-04-30 NaN 0.200670 0.093442 NaN \n", + "2015-05-31 NaN 0.200025 0.092900 NaN \n", + "2015-06-30 NaN 0.282668 0.142183 NaN \n", + "2015-07-31 NaN 0.283042 0.152700 NaN \n", + "2015-08-31 NaN 0.329721 0.144240 NaN \n", + "2015-09-30 0.020528 0.330706 0.135146 NaN \n", + "2015-10-31 0.021436 0.344366 0.141375 NaN \n", + "2015-11-30 0.021461 0.342481 0.136131 NaN \n", + "2015-12-31 0.026637 0.339917 0.136626 NaN \n", + "2016-01-31 0.027260 0.412689 0.138703 NaN \n", + "2016-02-29 0.025918 0.376846 0.131605 NaN \n", + "2016-03-31 0.025431 0.380498 0.131125 NaN \n", + "2016-04-30 0.025059 0.214491 0.133534 NaN \n", + "2016-05-31 0.022001 0.251350 0.134191 NaN \n", + "2016-06-30 0.021101 0.250804 0.137646 NaN \n", + "2016-07-31 0.051647 0.251745 0.139252 NaN \n", + "2016-08-31 0.050026 0.132435 0.144912 NaN \n", + "2016-09-30 0.048914 0.108794 0.150356 NaN \n", + "2016-10-31 0.041718 0.055267 0.132508 0.007034 \n", + "2016-11-30 0.049094 0.052696 0.128386 0.003689 \n", + "2016-12-31 0.029970 0.053172 0.128509 0.004911 \n", + "2017-01-31 0.028793 0.052865 0.029943 0.005110 \n", + "2017-02-28 0.023703 0.000000 0.025781 0.004976 \n", + "2017-03-31 0.021851 0.023780 0.004496 0.006000 \n", + "2017-04-30 0.023256 0.026483 0.003744 0.006638 \n", + "2017-05-31 0.020525 NaN 0.004466 0.021745 \n", + "2017-06-30 0.018609 0.018365 0.003300 0.039545 \n", + "2017-07-31 0.018896 0.019405 0.003447 0.035925 \n", + "2017-08-31 0.018036 0.018824 0.003345 0.035882 \n", + "2017-09-30 0.015945 0.016950 0.003242 0.000835 \n", + "2017-10-31 0.016110 0.007972 0.003367 0.026459 \n", + "2017-11-30 0.014214 0.007050 0.002972 0.024794 \n", + "2017-12-31 0.013600 0.006752 0.002844 -0.015971 " + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true |
