diff options
Diffstat (limited to 'python/notebooks')
| -rw-r--r-- | python/notebooks/Valuation Backtest.ipynb | 198 |
1 files changed, 198 insertions, 0 deletions
diff --git a/python/notebooks/Valuation Backtest.ipynb b/python/notebooks/Valuation Backtest.ipynb new file mode 100644 index 00000000..88211db3 --- /dev/null +++ b/python/notebooks/Valuation Backtest.ipynb @@ -0,0 +1,198 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "from matplotlib.ticker import FuncFormatter \n", + "from datetime import datetime\n", + "import pandas as pd\n", + "\n", + "import mark_backtest_underpar as mark\n", + "import globeop_reports as ops" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#exclude sell price that are over 200\n", + "df_long = mark.back_test('2013-01-01', '2018-01-01', sell_price_threshold = 200)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#%matplotlib nbagg\n", + "%matplotlib inline\n", + "mark.pretty_plot(df_long)\n", + "#file saved in serenitas shared drive/edwin/" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#exclude trades that are over 5x mark for purpose of regression\n", + "diff_threshold = 5\n", + "results = mark.stats(df_long, diff_threshold)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#Regression Intercept\n", + "results[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#Sale Difference\n", + "results[1]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#Now Calculate alternate valuation methodologies\n", + "df = mark.get_mark_df()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "mark.count_sources(df)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#difference by source\n", + "nav = ops.get_net_navs()['endbooknav']\n", + "difference = mark.diff_by_source_percentage(df)\n", + "#difference.to_clipboard()\n", + "\n", + "#plot\n", + "ax = difference.plot(kind = 'bar', legend = True)\n", + "\n", + "visible = ax.xaxis.get_ticklabels()[::6]\n", + "for label in ax.xaxis.get_ticklabels():\n", + " if label not in visible:\n", + " label.set_visible(False)\n", + " \n", + "ax.xaxis.set_major_formatter(plt.FixedFormatter(difference.index.to_series().dt.strftime(\"%b %Y\")))\n", + "ax.set_ylabel('NAV Impact vs. Fund Policy (%)')\n", + "vals = ax.get_yticks()\n", + "ax.set_yticklabels(['{:3.0f}%'.format(x*100) for x in vals])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "results = mark.alt_navs()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#%matplotlib nbagg\n", + "to_plot = ['mark_closest_all', 'mark_mean_all']\n", + "to_plot1 = ['mark_manager']\n", + "plot_df0 = results[1][to_plot]\n", + "plot_df1 = results[1][to_plot1]\n", + "\n", + "plot_df0 = plot_df0.rename(columns = {'mark_closest_all': 'Third-pary mark closest to LMCG valuation', \\\n", + " 'mark_mean_all': 'Average of all third-party marks'})\n", + "plot_df1 = plot_df1.rename(columns = {'mark_manager': 'Marks per fund valuation policy'})\n", + "\n", + "ax = plot_df0.plot(figsize = [10, 3.5])\n", + "ax = plot_df1.plot(marker = 'o', ax = ax)\n", + "plt.rcParams[\"font.family\"] = \"sans-serif\"\n", + "ax.set_xlabel('')\n", + "ax.set_ylabel('NAV', weight = 'bold')\n", + "ax.set_title('Fund Return Using Different Valuation Methods', weight = 'bold')\n", + "lgd = ax.legend(loc='upper center', bbox_to_anchor=(0.5, -.1), shadow=True, ncol=3)\n", + "ax.figure.savefig(\"/home/serenitas/edwin/PythonGraphs/Valuation_1.png\", bbox_extra_artists=(lgd,), bbox_inches='tight')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mark.annual_performance(results[1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pd.DataFrame(mark.alt_nav_impact())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} |
