aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks
diff options
context:
space:
mode:
Diffstat (limited to 'python/notebooks')
-rw-r--r--python/notebooks/Allocation Reports.ipynb120
1 files changed, 96 insertions, 24 deletions
diff --git a/python/notebooks/Allocation Reports.ipynb b/python/notebooks/Allocation Reports.ipynb
index a1af9465..9ad2a050 100644
--- a/python/notebooks/Allocation Reports.ipynb
+++ b/python/notebooks/Allocation Reports.ipynb
@@ -11,6 +11,7 @@
"import globeop_reports as go\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
"\n",
"from db import dbengine\n",
"engine = dbengine('dawndb')"
@@ -33,8 +34,12 @@
"metadata": {},
"outputs": [],
"source": [
- "pnl_alloc = go.alloc('pnl')\n",
- "alloc = pnl_alloc.xs(report_date)"
+ "#Find the strategies that are not defined: undefined needs to be mapped in strat_map\n",
+ "strats = pd.read_csv('/home/serenitas/edwin/Python/strat_map.csv')\n",
+ "nav = go.get_net_navs()\n",
+ "m_pnl = go.get_monthly_pnl(['strat', 'custacctname'])\n",
+ "m_pnl = m_pnl.reset_index().merge(strats, on=['strat', 'custacctname'], how='left')\n",
+ "undefined = m_pnl[m_pnl.pnl.isna()].groupby(['strat', 'custacctname']).last()"
]
},
{
@@ -43,8 +48,12 @@
"metadata": {},
"outputs": [],
"source": [
- "#Prev monthend PNL Allocation\n",
- "go.pnl_alloc_plot(alloc)"
+ "#Get PNL Allocation\n",
+ "#Input latest NAVS to: '/home/serenitas/edwin/Python/subscription_fee_data.csv'\n",
+ "pnl_alloc = m_pnl.groupby(['date', 'pnl']).sum()\n",
+ "pnl_alloc = pnl_alloc.join(nav.begbooknav)\n",
+ "pnl_alloc['strat_return'] = pnl_alloc.mtdtotalbookpl / pnl_alloc.begbooknav\n",
+ "pnl_alloc_last_month = pnl_alloc.xs(report_date)"
]
},
{
@@ -53,9 +62,14 @@
"metadata": {},
"outputs": [],
"source": [
- "#Pnl Alloc through time\n",
- "pnl_alloc_sum = pnl_alloc['mtdtotalbookpl']/ pnl_alloc['mtdtotalbookpl'].groupby(['periodenddate']).sum()\n",
- "pnl_alloc_sum.unstack().plot(kind='bar')"
+ "#Plot this month's PNL\n",
+ "ax = pnl_alloc_last_month['strat_return'].plot(kind='bar', figsize = (6,6), width = .35)\n",
+ "ax.set_xlabel('Strategy')\n",
+ "ax.set_ylabel('Return (%)')\n",
+ "x_ticks = ax.get_xticks()\n",
+ "y_ticks = ax.get_yticks()\n",
+ "ax.set_yticklabels(['{:.2f}%'.format(y*100) for y in y_ticks])\n",
+ "#plt.tight_layout()"
]
},
{
@@ -64,10 +78,36 @@
"metadata": {},
"outputs": [],
"source": [
- "#Capital Allocation\n",
- "cap_alloc = go.alloc('capital')\n",
- "alloc1 = cap_alloc.xs(report_date)\n",
- "go.cap_alloc_plot_pie(alloc1)"
+ "#Pnl through time\n",
+ "#pnl_alloc_sum = pnl_alloc['mtdtotalbookpl']/ pnl_alloc['mtdtotalbookpl'].groupby(['date']).sum()\n",
+ "#pnl_alloc_sum['strat_return'].unstack().plot(kind='bar')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#Capital Allocation - Find the strategies that are not defined: undefined needs to be mapped in strat_map\n",
+ "port = go.get_portfolio().reset_index()\n",
+ "cap_alloc = port.reset_index().merge(strats, on=['strat', 'custacctname'], how='left')\n",
+ "undefined = cap_alloc[cap_alloc.pnl.isna()].groupby(['strat', 'custacctname']).last()\n",
+ "alloc1 = cap_alloc[cap_alloc.periodenddate == report_date].groupby(['capital']).sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# create piechart and add a circle at the center\n",
+ "alloc1['percentage'] = alloc1['endbooknav']/alloc1['endbooknav'].sum()\n",
+ "ax = alloc1[alloc1>0]['percentage'].plot(kind='pie', figsize=(8,4), autopct='%1.1f%%', pctdistance=1.25, labeldistance=1.5)\n",
+ "ax.add_artist(plt.Circle((0,0), 0.7, color='white'))\n",
+ "ax.axis('equal')\n",
+ "#plt.tight_layout()"
]
},
{
@@ -77,7 +117,15 @@
"outputs": [],
"source": [
"#Average Portfolio Sales Turnover - as of last monthend from today\n",
- "go.avg_turnover()"
+ "#Total Bond Sales Proceeds/Average starting 12 months NAV\n",
+ "avg_nav = go.get_net_navs().begbooknav[-12:].mean()\n",
+ "last_monthend = datetime.date.today() - off.MonthEnd(1)\n",
+ "sql_string = \"SELECT * FROM bonds where buysell = 'False'\"\n",
+ "df = pd.read_sql_query(sql_string, dbengine('dawndb'),\n",
+ " parse_dates={'lastupdate':'utc=True', 'trade_date':'', 'settle_date':''})\n",
+ "df = df[(df.trade_date > last_monthend - off.MonthEnd(12))\n",
+ " & (df.trade_date <= last_monthend)]\n",
+ "(df.principal_payment + df.accrued_payment).sum()/avg_nav"
]
},
{
@@ -86,8 +134,12 @@
"metadata": {},
"outputs": [],
"source": [
- "#Number of bond positions by strategy by month - and copy to clipboard\n",
- "#go.num_bond_by_strat()"
+ "#Number of bond positions by strategy by month\n",
+ "df = go.get_portfolio()\n",
+ "df = df[(df.custacctname == 'V0NSCLMAMB') &\n",
+ " ~(df.invid.isin(['USD', 'CAD', 'EUR'])) & (df.endqty > 0)]\n",
+ "df = df.groupby(pd.Grouper(freq='M'), group_keys=False).apply(lambda df: df.loc[df.index[-1]])\n",
+ "num_bond_pos = df.groupby(['periodenddate', 'port']).identifier.nunique().unstack()"
]
},
{
@@ -96,8 +148,13 @@
"metadata": {},
"outputs": [],
"source": [
- "#Number of bond trades by direction by month - and copy to clipboard\n",
- "#go.num_bond_trades()"
+ "#Number of bond trades by direction by month\n",
+ "sql_string = \"SELECT * FROM bonds\"\n",
+ "df = pd.read_sql_query(sql_string, dbengine('dawndb'), parse_dates=['trade_date'],\n",
+ " index_col=['trade_date'])\n",
+ "df = df.groupby([pd.Grouper(freq='M'), 'buysell'], group_keys=False).identifier.count().unstack()\n",
+ "idx = pd.date_range(df.index[0], df.index[-1], freq = 'M')\n",
+ "num_bond_trades = df.reindex(idx, fill_value = 0)"
]
},
{
@@ -106,11 +163,11 @@
"metadata": {},
"outputs": [],
"source": [
- "df = cap_alloc.endbooknav.groupby('periodenddate').apply(lambda x: x/x.sum())\n",
- "df = df.unstack().groupby(pd.Grouper(freq='M')).apply(lambda df: df.loc[df.index[-1]])\n",
- "df = go.shift_cash(datetime.date(2017,11,30), -2096454, df, 'Curve')\n",
- "temp = df.iloc[-1].sort_values(ascending=False)\n",
- "df = df.reindex(temp.index, axis=1)"
+ "#capital allocation across time\n",
+ "cap_alloc_time = cap_alloc.groupby(['periodenddate','capital']).sum()\n",
+ "cap_alloc_time = cap_alloc_time.reset_index('capital').groupby(pd.Grouper(freq='M'), group_keys=False).apply(lambda df: df.loc[df.index[-1]])\n",
+ "cap_alloc_time['perc'] = cap_alloc_time['endbooknav'].groupby('periodenddate').apply(lambda x: x/x.sum())\n",
+ "cap_alloc_time = cap_alloc_time.set_index('capital', append=True)['perc'].unstack()"
]
},
{
@@ -119,8 +176,21 @@
"metadata": {},
"outputs": [],
"source": [
- "ax = go.cap_alloc_plot_bar(df[:-1])\n",
- "lgd = ax.legend(loc='lower center', bbox_to_anchor=(0.5, -0.3), ncol=4)\n",
+ "ax = cap_alloc_time.plot.bar(stacked=True, legend=False, figsize=(10,6))\n",
+ "\n",
+ "#Format Y Axis\n",
+ "vals = ax.get_yticks()\n",
+ "ax.set_yticklabels(['{:3.0f}%'.format(x*100) for x in vals])\n",
+ "\n",
+ "#Format X Axis\n",
+ "visible = ax.xaxis.get_ticklabels()[::6]\n",
+ "for label in ax.xaxis.get_ticklabels():\n",
+ " if label not in visible:\n",
+ " label.set_visible(False)\n",
+ "ax.xaxis.set_major_formatter(plt.FixedFormatter(df.index.to_series().dt.strftime(\"%b %Y\")))\n",
+ "ax.xaxis.set_label_text(\"\")\n",
+ "lgd = ax.legend(loc='lower center', bbox_to_anchor=(0.50, -0.6), ncol=4)\n",
+ "plt.tight_layout()\n",
"ax.figure.savefig(\"/home/serenitas/edwin/PythonGraphs/cap_alloc_1.png\", bbox_extra_artists=(lgd,), bbox_inches='tight')"
]
},
@@ -200,7 +270,9 @@
"execution_count": null,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "engine.dispose()"
+ ]
}
],
"metadata": {