diff options
Diffstat (limited to 'python/notebooks')
| -rw-r--r-- | python/notebooks/VaR.ipynb | 112 |
1 files changed, 88 insertions, 24 deletions
diff --git a/python/notebooks/VaR.ipynb b/python/notebooks/VaR.ipynb index fd48ded2..3bb3e83d 100644 --- a/python/notebooks/VaR.ipynb +++ b/python/notebooks/VaR.ipynb @@ -6,12 +6,17 @@ "metadata": {}, "outputs": [], "source": [ - "from analytics.curve_trades import curve_pos\n", - "from analytics import Index, Portfolio\n", + "from analytics.curve_trades import curve_pos, on_the_run\n", + "from analytics.index_data import get_index_quotes\n", + "from analytics.scenarios import run_portfolio_scenarios\n", + "from analytics import Swaption, BlackSwaption, CreditIndex, BlackSwaptionVolSurface, Portfolio, ProbSurface, DualCorrTranche\n", + "from db import dbconn\n", "\n", "import datetime\n", "import exploration.VaR as var\n", - "import pandas as pd" + "import pandas as pd\n", + "\n", + "conn = dbconn('dawndb')" ] }, { @@ -34,7 +39,7 @@ "source": [ "#IG Curve VaR\n", "portf = curve_pos(date, index_type)\n", - "ig_curve_var = abs(var.hist_var(portf, quantile=quantile))\n", + "ig_curve_var = abs(var.hist_var(portf, quantile=quantile, years=5))\n", "ig_curve_var" ] }, @@ -47,7 +52,7 @@ "#EU Curve VaR\n", "index_type = \"EU\"\n", "portf = curve_pos(date, index_type)\n", - "eu_curve_var = abs(var.hist_var(portf, quantile=quantile))\n", + "eu_curve_var = abs(var.hist_var(portf, quantile=quantile, years=5))\n", "eu_curve_var" ] }, @@ -58,9 +63,8 @@ "outputs": [], "source": [ "#Mortgage Hedge VaR - use IG spread relative move for VaR\n", - "df = var.get_pos(date)\n", - "df = df[df.strategy == 'HEDGE_MBS']\n", - "portf = Portfolio([Index.from_name(row.p_index, row.p_series, row.tenor,\n", + "df = var.get_pos(date, 'HEDGE_MBS')\n", + "portf = Portfolio([CreditIndex(row.p_index, row.p_series, row.tenor,\n", " report_date, -row.notional)\n", " for row in df[['p_index', 'tenor', 'p_series', 'notional']].\n", " itertuples(index=False)])\n", @@ -76,10 +80,10 @@ "outputs": [], "source": [ "#Import the IM at the FCM account: calculate the IM share of different strategies as a share of VaR\n", - "filename = date.strftime('%Y%m%d') + \"_OTC_MARGIN_EX_DEF.csv\"\n", - "margin_df = pd.read_csv(\"/home/serenitas/Daily/SG_reports/\" + filename, index_col='Currency')\n", - "morg_hedge_im = mort_hedge_var + mort_hedge_var/(mort_hedge_var + ig_curve_var) * margin_df.loc[('USD', 'SG IMR')]\n", - "morg_hedge_im" + "filename = date.strftime('%Y%m%d') + \"_OTC_MARGIN.csv\"\n", + "margin_df = pd.read_csv(\"/home/serenitas/Daily/SG_reports/\" + filename, index_col='System Currency')\n", + "mortg_hedge_im = mort_hedge_var + mort_hedge_var/(mort_hedge_var + ig_curve_var) * margin_df.loc[('USD', 'SG Settlement Margin')]\n", + "mortg_hedge_im" ] }, { @@ -99,15 +103,18 @@ "metadata": {}, "outputs": [], "source": [ - "#95%tile \n", - "df, spread, dur = var.rel_spread_diff(report_date)\n", - "stress = pd.DataFrame()\n", - "stress.at[('2SD_widen', 'spread')] = df.quantile(.975) \n", - "stress.at[('2SD_tighten', 'spread')] = df.quantile(.025) \n", - "stress.at[('worst_widen', 'spread')] = df.max()\n", - "stress['pts'] = -stress * spread * dur/100\n", - "stress['nav_impact'] = bond_HY_equiv * stress['pts']\n", - "stress" + "#Calculate amount of stress for reports\n", + "df = get_index_quotes('HY', list(range(on_the_run('HY') - 10, on_the_run('HY') + 1)),\n", + " tenor=['5yr'], years=5)\n", + "df = df.xs('5yr', level='tenor')['close_spread'].groupby(['date', 'series']).last()\n", + "\n", + "widen, tighten = [], []\n", + "#approximately 1,3,6 months move (22 each months)\n", + "for days in [22, 66, 132]: \n", + " calc = df.unstack().pct_change(freq= str(days)+'B').stack().groupby('date').last()\n", + " widen.append(calc.max())\n", + " tighten.append(calc.min())\n", + "pd.DataFrame([widen, tighten], columns=['1M', '3M', '6M'], index=['widen', 'tighten'])" ] }, { @@ -116,7 +123,62 @@ "metadata": {}, "outputs": [], "source": [ - "port.cleared_cds_margins(report_date, percentile)" + "#Current tranche and swaptions positions\n", + "t_sql_string = (\"SELECT id, sum(notional * case when protection='Buyer' then -1 else 1 end) \"\n", + " \"OVER (partition by security_id, attach) AS ntl_agg \"\n", + " \"FROM cds WHERE swap_type='CD_INDEX_TRANCHE' AND termination_cp IS NULL \"\n", + " \"AND trade_date <= %s\")\n", + "swaption_sql_string = (\"select id, security_desc from swaptions where date(expiration_date) \"\n", + " \"> %s and swap_type = 'CD_INDEX_OPTION' \"\n", + " \"AND trade_date <= %s\")\n", + "index_sql_string = (\"SELECT id, sum(notional * case when protection='Buyer' then -1 else 1 end) \"\n", + " \"OVER (partition by security_id, attach) AS ntl_agg \"\n", + " \"FROM cds WHERE swap_type='CD_INDEX' AND termination_cp IS null \"\n", + " \"AND folder = 'IGOPTDEL' OR folder = 'HYOPTDEL' \"\n", + " \"AND trade_date <= %s\")\n", + "conn = dbconn('dawndb')\n", + "with conn.cursor() as c:\n", + " #Get Tranche Trade Ids\n", + " c.execute(t_sql_string, (date,))\n", + " t_trade_ids = [dealid for dealid, ntl in c if ntl != 0]\n", + " #Get Swaption Trade Ids\n", + " c.execute(swaption_sql_string, (date, date))\n", + " swaption_trades = c.fetchall()\n", + " #Get Index/deltas Trade Ids\n", + " c.execute(index_sql_string, (date,))\n", + " index_trade_ids = [dealid for dealid, ntl in c if ntl != 0]\n", + " \n", + "portf = Portfolio([DualCorrTranche.from_tradeid(dealid) for dealid in t_trade_ids],\n", + " t_trade_ids)\n", + "for row in swaption_trades:\n", + " option_delta = CreditIndex(row[1].split()[1], row[1].split()[3][1:], '5yr', date)\n", + " option_delta.mark()\n", + " portf.add_trade(BlackSwaption.from_tradeid(row[0], option_delta), 'opt_' + str(row[0]))\n", + "for index_id in index_trade_ids:\n", + " portf.add_trade(CreditIndex.from_tradeid(index_id), 'index_' + str(index_id))\n", + " \n", + "#Update manually - positive notional = long risk\n", + "non_trancheSwap_risk_notional = 33763230\n", + "portf.add_trade(CreditIndex('HY', on_the_run('HY'), '5yr', value_date = date, notional = -non_trancheSwap_risk_notional), 'port')\n", + " \n", + "portf.value_date = date\n", + "portf.mark()\n", + "portf.reset_pv()\n", + " \n", + "vs = BlackSwaptionVolSurface(portf.swaptions[0].index.index_type, portf.swaptions[0].index.series, value_date=date)\n", + "vol_surface = vs[vs.list(option_type='payer')[-1]]\n", + "vol_shock = [0]\n", + "corr_shock = [0]\n", + "spread_shock = widen + tighten\n", + "date_range = [pd.Timestamp(date)]\n", + "\n", + "scens = run_portfolio_scenarios(portf, date_range, params=[\"pnl\"],\n", + " spread_shock=spread_shock,\n", + " vol_shock=vol_shock,\n", + " corr_shock=corr_shock,\n", + " vol_surface=vol_surface)\n", + "\n", + "scens.sum(axis=1)" ] }, { @@ -124,7 +186,9 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "var.cleared_cds_margins(report_date)" + ] } ], "metadata": { @@ -143,7 +207,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.7.0" } }, "nbformat": 4, |
