diff options
Diffstat (limited to 'python/script_calibrate_tranches.py')
| -rw-r--r-- | python/script_calibrate_tranches.py | 31 |
1 files changed, 0 insertions, 31 deletions
diff --git a/python/script_calibrate_tranches.py b/python/script_calibrate_tranches.py deleted file mode 100644 index 6368a74f..00000000 --- a/python/script_calibrate_tranches.py +++ /dev/null @@ -1,31 +0,0 @@ -import numpy as np -from tranche_functions import GHquad, BClossdist - -n_int = 500 -n_credit = 100 -Z, w = GHquad(n_int) - -with open("recov.csv") as fh: - recov = np.array([float(e) for e in fh], dtype='double', order='F') - -with open("SurvProb.csv") as fh: - SurvProb = np.array([[float(e) for e in line.split(",")] for line in fh], dtype='double', order='F') - -defaultprob = 1 - SurvProb -p = defaultprob -rho = 0.45 * np.ones(n_credit) - -for l in range(150): - Rstoch = np.zeros((n_credit, n_int, SurvProb.shape[1])) - for t in range(SurvProb.shape[1]): - for i in range(n_credit): - Rstoch[i,:,t] = stochasticrecov(recov[i], 0, Z, w_mod, rho[i], defaultprob[i,t], p[i,t]) - L = np.zeros((n_int, Ngrid, SurvProb.shape[1])) - R = np.zeros((n_int, Ngrid, SurvProb.shape[1])) - for t in range(SurvProba.shape[1]): - S = 1 - Rstoch[:,:,t] - L[:,:,t] = lossdistZ(p[:,t], issuerweights, S, Ngrid, 0, rho, Z) - R[:,:,t] = lossdistZ(p[:,t], issuerweights, S, Ngrid, 0, rho, Z) - - for i in range(n_int): - result[:,i] = tranche.pvvec(Kmodified, L[i,,], R[i,,], cs) |
