aboutsummaryrefslogtreecommitdiffstats
path: root/python/swaption.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/swaption.py')
-rw-r--r--python/swaption.py312
1 files changed, 11 insertions, 301 deletions
diff --git a/python/swaption.py b/python/swaption.py
index c85a9b12..68486cc8 100644
--- a/python/swaption.py
+++ b/python/swaption.py
@@ -1,308 +1,15 @@
-from pyisda.legs import ContingentLeg, FeeLeg
from pyisda.flat_hazard import strike_vec
-from pyisda.curve import YieldCurve, BadDay, SpreadCurve
-from yieldcurve import YC, ql_to_jp, roll_yc, rate_helpers
-from pyisda.cdsone import upfront_charge
-from quantlib.settings import Settings
from quantlib.time.api import Date
import array
-import math
from scipy.optimize import brentq
from scipy.integrate import simps
-import numpy as np
import datetime
-from tranche_functions import GHquad
+import numpy as np
import pandas as pd
from pandas.tseries.offsets import BDay
-from db import dbconn
-from psycopg2 import DataError
-from dates import prev_immdate
-
+from tranche_functions import GHquad
+from yieldcurve import roll_yc
from scipy.stats import norm
-from termcolor import colored
-serenitasdb = dbconn('serenitasdb')
-
-class Index():
- """ minimal class to represent a credit index """
- def __init__(self, start_date, end_date, recovery, fixed_rate,
- notional = 10e6):
- """
- start_date : :class:`datetime.date`
- index start_date (Could be issue date, or last imm date)
- end_date : :class:`datetime.date`
- index last date
- recovery :
- recovery rate (between 0 and 1)
- fixed_rate :
- fixed coupon (in bps)
- """
- self.fixed_rate = fixed_rate
- self.notional = notional
- self._start_date = start_date
- self._end_date = end_date
- self.recovery = recovery
-
- self._fee_leg = FeeLeg(start_date, end_date, True, 1, 1)
- self._default_leg = ContingentLeg(start_date, end_date, 1)
- self._trade_date = None
- self._yc = None
- self._risky_annuity = None
- self._spread = None
- self.name = None
-
- @property
- def start_date(self):
- return self._start_date
-
- @property
- def end_date(self):
- return self._end_date
-
- @start_date.setter
- def start_date(self, d):
- self._fee_leg = FeeLeg(d, self.end_date, True, 1, 1)
- self._default_leg = ContingentLeg(d, self.end_date, 1)
- self._start_date = d
-
- @end_date.setter
- def end_date(self, d):
- self._fee_leg = FeeLeg(self.start_date, d, True, 1, 1)
- self._default_leg = ContingentLeg(self.start_date, d, 1)
- self._end_date = d
-
- def forward_annuity(self, exercise_date):
- step_in_date = exercise_date + datetime.timedelta(days=1)
- value_date = (pd.Timestamp(exercise_date) + 3* BDay()).date()
- a = self._fee_leg.pv(self.trade_date, step_in_date, self._value_date,
- self._yc, self._sc, False)
- Delta = self._fee_leg.accrued(step_in_date)
- df = self._yc.discount_factor(value_date)
- if exercise_date > self.trade_date:
- q = math.exp(-self.flat_hazard * year_frac(self._step_in_date, exercise_date))
- else:
- q = 1
- return a - Delta * df * q
-
- def forward_pv(self, exercise_date):
- """This is default adjusted forward price at time exercise_date"""
- step_in_date = exercise_date + datetime.timedelta(days=1)
- value_date = (pd.Timestamp(exercise_date) + 3* BDay()).date()
- a = self._fee_leg.pv(self.trade_date, step_in_date, self._value_date,
- self._yc, self._sc, False)
- Delta = self._fee_leg.accrued(step_in_date)
- df = self._yc.discount_factor(value_date)
- if exercise_date > self.trade_date:
- q = math.exp(-self.flat_hazard * (year_frac(self.trade_date, exercise_date)))
- else:
- q = 1
- clean_forward_annuity = a - Delta * df * q
- dl_pv = self._default_leg.pv(
- self.trade_date, step_in_date, self._value_date,
- self._yc, self._sc, self.recovery)
- forward_price = self.notional * (dl_pv - clean_forward_annuity * self.fixed_rate*1e-4)
- fep = self.notional * (1 - self.recovery) * (1 - q)
- return forward_price * self._yc.discount_factor(self._value_date) / df + fep
-
- @property
- def spread(self):
- return self._spread * 1e4
-
- def _update(self):
- self._sc = SpreadCurve(self.trade_date, self._yc, self.start_date,
- self._step_in_date, self._value_date,
- [self.end_date], array.array('d', [self._spread]),
- self.recovery)
- self._risky_annuity = self._fee_leg.pv(self.trade_date, self._step_in_date,
- self._value_date, self._yc,
- self._sc, False)
- self._dl_pv = self._default_leg.pv(
- self.trade_date, self._step_in_date, self._value_date,
- self._yc, self._sc, self.recovery)
- self._pv = self._dl_pv - self._risky_annuity * self.fixed_rate * 1e-4
- self._clean_pv = self._pv + self._accrued * self.fixed_rate * 1e-4
- self._price = 100 * (1 - self._clean_pv)
-
- @spread.setter
- def spread(self, s: float):
- """ s: spread in bps """
- self._spread = s * 1e-4
- self._update()
-
- @property
- def flat_hazard(self):
- sc_data = self._sc.inspect()['data']
- ## conversion to continuous compounding
- return math.log(1 + sc_data[0][1])
-
- @property
- def pv(self):
- return self.notional * self._pv
-
- @property
- def accrued(self):
- return - self.notional * self._accrued * self.fixed_rate * 1e-4
-
- @property
- def days_accrued(self):
- return int(self._accrued * 360)
-
- @property
- def clean_pv(self):
- return self.notional * self._clean_pv
-
- @property
- def price(self):
- return self._price
-
- @price.setter
- def price(self, val):
- pass
-
- @property
- def DV01(self):
- old_pv = self.pv
- self.spread += 1
- dv01 = self.pv - old_pv
- self.spread -= 1
- return dv01
-
- @property
- def IRDV01(self):
- old_pv = self.pv
- old_yc = self._yc
- for rh in self._helpers:
- rh.quote += 1e-4
- self._yc = ql_to_jp(self._ql_yc)
- self._update() ## to force recomputation
- new_pv = self.pv
- for r in self._helpers:
- r.quote -= 1e-4
- self._yc = old_yc
- self._update()
- return new_pv - old_pv
-
- @property
- def rec_risk(self):
- old_pv = self.pv
- old_recovery = self.recovery
- self.recovery = old_recovery - 0.01
- self._update()
- pv_minus = self.pv
- self.recovery = old_recovery + 0.01
- self._update()
- pv_plus = self.pv
- self.recovery = old_recovery
- self._update()
- return (pv_plus - pv_minus)/2
-
- @property
- def jump_to_default(self):
- return self.notional * (1 - self.recovery) - self.clean_pv
-
- @property
- def risky_annuity(self):
- return self._risky_annuity - self._accrued
-
- @property
- def trade_date(self):
- if self._trade_date is None:
- raise AttributeError('Please set trade_date first')
- else:
- return self._trade_date
-
- @trade_date.setter
- def trade_date(self, d):
- self.start_date = prev_immdate(pd.Timestamp(d)).date()
- settings = Settings()
- settings.evaluation_date = Date.from_datetime(d)
- self._helpers = rate_helpers(self.currency)
- self._ql_yc = YC(self._helpers)
- self._yc = ql_to_jp(self._ql_yc)
- self._trade_date = d
- self._step_in_date = self.trade_date + datetime.timedelta(days=1)
- self._accrued = self._fee_leg.accrued(self._step_in_date)
- self._value_date = (pd.Timestamp(self._trade_date) + 3* BDay()).date()
- if self._spread is not None:
- self._update()
-
- @classmethod
- def from_name(cls, index, series, tenor, trade_date = datetime.date.today(),
- notional = 10e6):
- try:
- with serenitasdb.cursor() as c:
- c.execute("SELECT maturity, coupon FROM index_maturity " \
- "WHERE index=%s AND series=%s AND tenor = %s",
- (index.upper(), series, tenor))
- maturity, coupon = next(c)
- except DataError as e:
- raise
- else:
- recovery = 0.4 if index.lower() == "ig" else 0.3
- start_date = prev_immdate(pd.Timestamp(trade_date)).date()
- instance = cls(start_date, maturity, recovery, coupon)
- instance.name = "MARKIT CDX.NA.{}.{} {:%m/%y} ".format(
- index.upper(),
- series,
- maturity)
- if index.upper() in ["IG", "HY"]:
- instance.currency = "USD"
- else:
- instance.currency = "EUR"
- instance.notional = notional
- instance.trade_date = trade_date
- return instance
-
- def __repr__(self):
- if self.days_accrued > 1:
- accrued_str = "Accrued ({} Days)".format(self.days_accrued)
- else:
- accrued_str = "Accrued ({} Day)".format(self.days_accrued)
- s = ["{:<20}\t{:>15}".format("CDS Index", colored(self.name, attrs = ['bold'])),
- "",
- "{:<20}\t{:>15}".format("Trade Date", ('{:%m/%d/%y}'.
- format(self.trade_date))),
- "{:<20}\t{:>15.2f}\t\t{:<20}\t{:>10,.2f}".format("Trd Sprd (bp)",
- self.spread,
- "Coupon (bp)",
- self.fixed_rate),
- "{:<20}\t{:>15.2f}\t\t{:<20}\t{:>10}".format("1st Accr Start",
- self.spread,
- "Payment Freq",
- "Quarterly"),
- "{:<20}\t{:>15}\t\t{:<20}\t{:>10.2f}".format("Maturity Date",
- ('{:%m/%d/%y}'.
- format(self.end_date)),
- "Rec Rate",
- self.recovery),
- "{:<20}\t{:>15}\t\t{:<20}\t{:>10}".format("Bus Day Adj",
- "Following",
- "Day Count",
- "ACT/360"),
- "",
- colored("Calculator", attrs = ['bold']),
- "{:<20}\t{:>15}".format("Valuation Date", ('{:%m/%d/%y}'.
- format(self.trade_date))),
- "{:<20}\t{:>15}".format("Cash Settled On", ('{:%m/%d/%y}'.
- format(self._value_date))),
- "",
- "{:<20}\t{:>15.8f}\t\t{:<20}\t{:>10,.2f}".format("Price",
- self.price,
- "Spread DV01",
- self.DV01),
- "{:<20}\t{:>15,.0f}\t\t{:<20}\t{:>10,.2f}".format("Principal",
- self.clean_pv,
- "IR DV01",
- self.IRDV01),
- "{:<20}\t{:>15,.0f}\t\t{:<20}\t{:>10,.2f}".format(accrued_str,
- self.accrued,
- "Rec Risk (1%)",
- self.rec_risk),
- "{:<20}\t{:>15,.0f}\t\t{:<20}\t{:>10,.0f}".format("Cash Amount",
- self.pv,
- "Def Exposure",
- self.jump_to_default)
- ]
- return "\n".join(s)
def year_frac(d1, d2, day_count_conv = "Actual/365"):
""" compute the year fraction between two dates """
@@ -311,7 +18,6 @@ def year_frac(d1, d2, day_count_conv = "Actual/365"):
elif day_count_conv.lower() in ["actual/360", "act/360"]:
return (d2-d1).days/360
-
def calib(S0, fp, exercise_date, exercise_date_settle, index,
rolled_curve, tilt, w):
S = S0 * tilt * 1e-4
@@ -388,6 +94,7 @@ class Option:
b *= eta
S0 = brentq(calib, a, b, args)
+
G = g(self.index, self.strike, self.exercise_date)
if T == 0:
pv = self.notional * (g(self.index, self.index.spread, self.exercise_date) - G)
@@ -397,7 +104,8 @@ class Option:
return - pv if self.index.spread < self.strike else 0
Zstar = (math.log(self.strike/S0) + self.sigma**2/2 * T) / \
- (self.sigma * math.sqrt(T))
+ (self.sigma * math.sqrt(T))
+
if self.option_type == "payer":
Z = Zstar + np.logspace(0, 1.5, 300) - 1
elif self.option_type == "receiver":
@@ -514,9 +222,11 @@ def option(index, exercise_date, sigma, K, option_type="payer"):
if __name__ == "__main__":
import datetime
- from swaption import Index, Option
+ from analytics import Index
+ from swaption import Option
+
ig27_5yr = Index.from_name('ig', 27, '5yr', datetime.date(2016, 10, 24))
ig27_5yr.spread = 74
- payer = Option(ig27_5yr, datetime.date(2017, 3, 15), 75)
- payer.sigma = 0.4847
+ payer = Option(ig27_5yr, datetime.date(2016, 12, 21), 65)
+ payer.sigma = 0.428
payer.notional = 10e6