aboutsummaryrefslogtreecommitdiffstats
path: root/python/tranche_functions.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/tranche_functions.py')
-rw-r--r--python/tranche_functions.py30
1 files changed, 20 insertions, 10 deletions
diff --git a/python/tranche_functions.py b/python/tranche_functions.py
index 44244040..72a06b4b 100644
--- a/python/tranche_functions.py
+++ b/python/tranche_functions.py
@@ -1,16 +1,16 @@
import numpy as np
from ctypes import *
-lib = np.ctypeslib.load_library("lossdistribgomez", "/home/share/CorpCdos/code/R")
-lib.fitprob.restype = None
-lib.fitprob.argtypes = [np.ctypeslib.ndpointer('double', ndim=1, flags='F'),
+libloss = np.ctypeslib.load_library("lossdistribgomez", "/home/share/CorpCdos/code/R")
+libloss.fitprob.restype = None
+libloss.fitprob.argtypes = [np.ctypeslib.ndpointer('double', ndim=1, flags='F'),
np.ctypeslib.ndpointer('double', ndim=1, flags='F'),
POINTER(c_int),
POINTER(c_double),
POINTER(c_double),
np.ctypeslib.ndpointer('double', ndim=1, flags='F,writeable')]
-lib.stochasticrecov.restype = None
-lib.stochasticrecov.argtypes = [POINTER(c_double),
+libloss.stochasticrecov.restype = None
+libloss.stochasticrecov.argtypes = [POINTER(c_double),
POINTER(c_double),
np.ctypeslib.ndpointer('double', ndim=1, flags='F'),
np.ctypeslib.ndpointer('double', ndim=1, flags='F'),
@@ -20,18 +20,28 @@ lib.stochasticrecov.argtypes = [POINTER(c_double),
POINTER(c_double),
np.ctypeslib.ndpointer('double', ndim=1, flags='F,writeable')]
+libgq = np.ctypeslib.load_library("GHquad", ".")
+libgq.GHquad.restype = None
+libgq.GHquad.argtypes = [c_int, np.ctypeslib.ndpointer('double', ndim=1, flags='F'),
+ np.ctypeslib.ndpointer('double', ndim=1, flags='F')]
+def GHquad(n):
+ Z = np.zeros(n, dtype='double')
+ w = np.zeros(n, dtype='double')
+ libgq.GHquad(n, Z, w)
+ return Z, w
+
def stochasticrecov(R, Rtilde, Z, w, rho, porig, pmod):
q = np.zeros_like(Z)
- lib.stochasticrecov(byref(c_double(R)), byref(c_double(Rtilde)), Z, w, byref(c_int(Z.size)),
+ libloss.stochasticrecov(byref(c_double(R)), byref(c_double(Rtilde)), Z, w, byref(c_int(Z.size)),
byref(c_double(rho)), byref(c_double(porig)), byref(c_double(pmod)), q)
return q
-def lossdistZ(p, w, S, N, defaultflag= False, rho, Z, wZ):
- q = np.zeros_like(Z)
- lib.lossdistrib_Z(byref())
+# def lossdistZ(p, w, S, N, defaultflag= False, rho, Z, wZ):
+# q = np.zeros_like(Z)
+# lib.lossdistrib_Z(byref())
def fitprob(Z, w, rho, p0):
result = np.empty_like(Z)
- lib.fitprob(Z, w, byref(c_int(Z.size)), byref(c_double(rho)), byref(c_double(p0)), result)
+ libloss.fitprob(Z, w, byref(c_int(Z.size)), byref(c_double(rho)), byref(c_double(p0)), result)
return result