aboutsummaryrefslogtreecommitdiffstats
path: root/python
diff options
context:
space:
mode:
Diffstat (limited to 'python')
-rw-r--r--python/notebooks/brinker_reports.ipynb73
1 files changed, 30 insertions, 43 deletions
diff --git a/python/notebooks/brinker_reports.ipynb b/python/notebooks/brinker_reports.ipynb
index 03b0a2b4..6f1757dc 100644
--- a/python/notebooks/brinker_reports.ipynb
+++ b/python/notebooks/brinker_reports.ipynb
@@ -7,22 +7,15 @@
"outputs": [],
"source": [
"import datetime\n",
- "from pandas.tseries.offsets import BDay, MonthEnd\n",
"import globeop_reports as go\n",
"import pandas as pd\n",
"import serenitas.analytics\n",
"import numpy as np\n",
"\n",
- "from serenitas.analytics.index_data import get_index_quotes\n",
- "from serenitas.analytics.scenarios import run_portfolio_scenarios\n",
- "from serenitas.analytics import BlackSwaption, CreditIndex, BlackSwaptionVolSurface, Portfolio,DualCorrTranche\n",
- "\n",
+ "from pandas.tseries.offsets import BDay, MonthEnd, BMonthEnd\n",
+ "from pnl_explain import get_bond_pv\n",
"from serenitas.utils.db import dbconn, dbengine\n",
"\n",
- "from risk.tranches import get_tranche_portfolio\n",
- "from risk.swaptions import get_swaption_portfolio\n",
- "from risk.bonds import subprime_risk, clo_risk, crt_risk\n",
- "\n",
"dawn_engine = dbengine('dawndb')"
]
},
@@ -34,41 +27,31 @@
"source": [
"################################### Average Portfolio Sales Turnover - as of last monthend from today\n",
"#Actually: Rolling months sum of (total bond sales proceeds + paydown)/monthly NAV\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
"fund='BRINKER'\n",
- "sql_string = \"SELECT * FROM bond_trades WHERE buysell IS False and fund = %s order by trade_date desc\"\n",
- "df = pd.read_sql_query(sql_string, dawn_engine,\n",
- " parse_dates={'lastupdate':{'utc':True}, 'trade_date': {}, 'settle_date':{}},\n",
- " params=[fund,],\n",
- " index_col = 'trade_date')\n",
- "df = df.groupby(pd.Grouper(freq='M')).sum()\n",
- "\n",
+ "df_inst={}\n",
+ "for ac in ['CRT', 'Subprime', 'CLO']:\n",
+ " df_inst[ac] = get_bond_pv(\n",
+ " datetime.date.today() - BMonthEnd(24),\n",
+ " datetime.date.today() - BMonthEnd(),\n",
+ " fund=fund,\n",
+ " conn=dbconn(\"dawndb\"),\n",
+ " asset_class =ac)\n",
+ "df_inst = pd.concat(df_inst)\n",
+ "df = df_inst[(df_inst.principal_payment < 0) | \n",
+ " (df_inst.principal > 0)]\n",
+ "df['principal_payment'] = df['principal_payment'].abs()\n",
+ "df = df.reset_index(level=[0,2], drop=True)\n",
+ "df = df[['principal','principal_payment']].groupby(pd.Grouper(freq='M')).sum().sum(axis=1)\n",
"brinker_nav = pd.read_sql_query(\"select distinct accounting_date, total_net_assets from bbh_val order by accounting_date desc\",\n",
" dawn_engine,\n",
" parse_dates=[\"accounting_date\"],\n",
" index_col=[\"accounting_date\"])\n",
"\n",
- "start_date = datetime.date(2019,3,18)\n",
- "end_date = datetime.date.today()\n",
- "cf = pd.read_sql_query(\"SELECT * FROM cashflow_history where date > %s and date <= %s\", dawn_engine,\n",
- " params=[start_date, end_date],\n",
- " parse_dates=['date'],\n",
- " index_col=['date']).sort_index()\n",
- "sql_string = \"SELECT description, identifier, notional, price, factor FROM risk_positions(%s, %s, 'BRINKER')\"\n",
- "pos = {}\n",
- "for d in cf.index.unique():\n",
- " for ac in ['Subprime', 'CRT']:\n",
- " pos[d, ac] = pd.read_sql_query(sql_string, dawn_engine, params=[d.date(), ac])\n",
- "pos = pd.concat(pos, names=['date', 'asset_class'])\n",
- "pos = pos.reset_index(level=[1,2])\n",
- "\n",
- "cf_1 = pd.merge_asof(cf, pos.sort_index(), left_index=True, right_index=True, by='identifier')\n",
- "cf_1 = cf_1.dropna(subset=['notional'])\n",
- "cf_1 = cf_1[(cf_1.principal_bal != 0) & (cf_1.principal != 0)]\n",
- "cf_1['paydown'] = cf_1.apply(lambda df: df.notional * df.factor/df.principal_bal * df.principal, axis=1)\n",
- "paydowns = cf_1.paydown.groupby(pd.Grouper(freq='M')).sum()\n",
- "turnover = pd.concat([paydowns, df.principal_payment, df.accrued_payment], axis=1).fillna(0)\n",
"brinker_nav = brinker_nav.groupby(pd.Grouper(freq='M')).last()\n",
- "turnover = (turnover.sum(axis=1)/brinker_nav.total_net_assets).rolling(min(13, len(turnover))-1).sum()"
+ "turnover = df.rolling(min(13, len(df))-1).sum()/brinker_nav.total_net_assets\n",
+ "turnover"
]
},
{
@@ -93,10 +76,7 @@
"df.loc['2019-3-19','total_net_asset'] = 110000000\n",
"df['ret'] = (df.total_net_assets - df.beg_nav)/df.beg_nav\n",
"cum_ret = (df.ret+1).cumprod()\n",
- "\n",
- "monthly= cum_ret.groupby(pd.Grouper(freq='M')).nth(-1)\n",
- "\n",
- "#monthly.pct_change().plot()"
+ "monthly= cum_ret.groupby(pd.Grouper(freq='M')).nth(-1)"
]
},
{
@@ -152,11 +132,18 @@
"load_date = datetime.date(2020,9,7)\n",
"load.load_reports(load_date)"
]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
}
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -170,7 +157,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.9.1-final"
+ "version": "3.10.9"
}
},
"nbformat": 4,