aboutsummaryrefslogtreecommitdiffstats
path: root/python
diff options
context:
space:
mode:
Diffstat (limited to 'python')
-rw-r--r--python/notebooks/Interest Statement.ipynb106
1 files changed, 83 insertions, 23 deletions
diff --git a/python/notebooks/Interest Statement.ipynb b/python/notebooks/Interest Statement.ipynb
index 5e016fcb..bd053ff3 100644
--- a/python/notebooks/Interest Statement.ipynb
+++ b/python/notebooks/Interest Statement.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
@@ -23,12 +23,13 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 104,
"metadata": {},
"outputs": [],
"source": [
"from IPython.display import display\n",
"from pandas.tseries.offsets import BDay\n",
+ "import numpy as np\n",
"\n",
"def f(df_balances, df_rates, broker, start_date, end_date):\n",
" df = (df_balances[df_balances.broker == broker].\n",
@@ -36,11 +37,22 @@
" unstack(\"strategy\"))\n",
" df[df.isnull()] = 0.\n",
" drange = pd.date_range(pd.Timestamp(start_date) - BDay(), end_date)\n",
- " rates = df_rates.reindex(drange, method=\"ffill\").values /100 /360\n",
- " df = df.reindex(drange, method=\"ffill\") * rates\n",
- " df = df.loc[start_date:]\n",
- " display(df.sum().to_frame(name='amount'))\n",
- " print(df.sum().sum())\n",
+ " rates = df_rates.reindex(drange, method=\"ffill\") /100 /360\n",
+ " df = df.reindex(drange, method=\"ffill\")\n",
+ " if broker in [\"BAML_ISDA\", \"CITI\"]:\n",
+ " d = {}\n",
+ " for strat in df:\n",
+ " s = df.loc[start_date:, strat]\n",
+ " ir_bal = 0.\n",
+ " for bal, r in zip(s.values, rates.loc[start_date:, 'rate'].values):\n",
+ " bal += ir_bal\n",
+ " ir_bal += bal * r\n",
+ " d[strat] = ir_bal\n",
+ " result = pd.Series(d, name='amount')\n",
+ " else:\n",
+ " result = (df.loc[start_date:] * rates.loc[start_date:].values).sum().to_frame(name='amount')\n",
+ " display(result)\n",
+ " print(result.sum())\n",
" \n",
"from functools import partial\n",
"f_print = partial(f, df_balances, df_rates)"
@@ -48,9 +60,24 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 105,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "6f7a35fe5dcd486480d9819426ef7f6d",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "VBox(children=(HBox(children=(Dropdown(description='Broker:', index=3, options=('BAML_FCM', 'BAML_ISDA', 'BNP'…"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
"source": [
"from ipywidgets import widgets, Layout\n",
"import datetime\n",
@@ -63,12 +90,12 @@
"start_date = widgets.DatePicker(\n",
" description='start:',\n",
" disabled=False,\n",
- " value=datetime.date(2019, 6, 1)\n",
+ " value=datetime.date(2019, 9, 1)\n",
")\n",
"end_date = widgets.DatePicker(\n",
" description='end:',\n",
" disabled=False,\n",
- " value=datetime.date(2019, 6, 30)\n",
+ " value=datetime.date(2019, 9, 30)\n",
")\n",
"output = widgets.interactive_output(f_print, {'broker': broker_widget, 'start_date': start_date, 'end_date': end_date})\n",
"output.layout= Layout(margin='auto auto auto 90px')\n",
@@ -81,24 +108,57 @@
"metadata": {},
"outputs": [],
"source": [
- "f(df_balances, df_rates, \"MS\", \"2019-06-01\", \"2019-06-30\").sum(axis=1)"
+ "df_balances[df_balances.broker=='BAML_ISDA'].loc[\"2019-06-10\"]"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 106,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "date\n",
+ "2019-08-30 -910,332.93\n",
+ "2019-09-02 -910,332.93\n",
+ "2019-09-03 -910,332.93\n",
+ "2019-09-04 -911,899.69\n",
+ "2019-09-05 -911,899.69\n",
+ "2019-09-06 -911,899.69\n",
+ "2019-09-09 -911,899.69\n",
+ "2019-09-10 -911,899.69\n",
+ "2019-09-11 -911,899.69\n",
+ "2019-09-12 -911,899.69\n",
+ "2019-09-13 -911,899.69\n",
+ "2019-09-16 -911,899.69\n",
+ "2019-09-17 -911,899.69\n",
+ "2019-09-18 -911,899.69\n",
+ "2019-09-19 -911,899.69\n",
+ "2019-09-20 -911,899.69\n",
+ "2019-09-23 -911,899.69\n",
+ "2019-09-24 -911,899.69\n",
+ "2019-09-25 -911,899.69\n",
+ "2019-09-26 -911,899.69\n",
+ "2019-09-27 -911,899.69\n",
+ "2019-09-30 -911,899.69\n",
+ "2019-10-01 -911,899.69\n",
+ "2019-10-02 -913,453.48\n",
+ "2019-10-03 -913,453.48\n",
+ "2019-10-04 -913,453.48\n",
+ "2019-10-07 -913,453.48\n",
+ "Name: amount, dtype: float64"
+ ]
+ },
+ "execution_count": 106,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "df_balances[df_balances.broker=='MS'].loc[\"2019-06-10\"]"
+ "df_baml=df_balances[df_balances.broker == \"BAML_ISDA\"]\n",
+ "df_baml.groupby(df_baml.index)['amount'].sum()[\"2019-08-30\":]"
]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
}
],
"metadata": {
@@ -117,7 +177,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.3"
+ "version": "3.7.4"
}
},
"nbformat": 4,