aboutsummaryrefslogtreecommitdiffstats
path: root/python
diff options
context:
space:
mode:
Diffstat (limited to 'python')
-rw-r--r--python/analytics/__init__.py2
-rw-r--r--python/notebooks/Tranche calculator.ipynb118
2 files changed, 66 insertions, 54 deletions
diff --git a/python/analytics/__init__.py b/python/analytics/__init__.py
index 7df8df50..b46dd4f3 100644
--- a/python/analytics/__init__.py
+++ b/python/analytics/__init__.py
@@ -19,7 +19,7 @@ from .option import (
from .portfolio import Portfolio
from .basket_index import MarkitBasketIndex
from .singlename_cds import SingleNameCds
-from .tranche_basket import DualCorrTranche, TrancheBasket
+from .tranche_basket import DualCorrTranche, TrancheBasket, ManualTrancheBasket
from .ir_swaption import IRSwaption
import datetime
diff --git a/python/notebooks/Tranche calculator.ipynb b/python/notebooks/Tranche calculator.ipynb
index 3b55e4a7..8649d43e 100644
--- a/python/notebooks/Tranche calculator.ipynb
+++ b/python/notebooks/Tranche calculator.ipynb
@@ -12,11 +12,40 @@
"import matplotlib.pyplot as plt\n",
"\n",
"from analytics.scenarios import run_tranche_scenarios, run_portfolio_scenarios, run_tranche_scenarios_rolldown\n",
- "from analytics import DualCorrTranche, TrancheBasket\n",
+ "from analytics import DualCorrTranche, TrancheBasket, ManualTrancheBasket\n",
"from utils.db import dbconn\n",
- "from datetime import date\n",
- "\n",
- "value_date = (date.today() - pd.offsets.BDay(1)).date()"
+ "from datetime import date"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def build_tranche_quotes(index_type, ref, quotes):\n",
+ " if index_type == 'HY':\n",
+ " detach = [15, 25, 35, 100] \n",
+ " elif index_type == 'IG':\n",
+ " detach = [3, 7, 15, 100] \n",
+ " elif index_type == 'EU':\n",
+ " detach = [3, 6, 12, 100] \n",
+ " else:\n",
+ " detach = [10, 20, 35, 100]\n",
+ " coupon = 500 if (index_type == 'HY' or index_type == 'XO') else 100\n",
+ " if index_type == 'HY':\n",
+ " ref_type1 = 'indexrefprice'\n",
+ " ref_type2 = 'indexrefspread'\n",
+ " ref_2 = None\n",
+ " else:\n",
+ " ref_type1 = 'indexrefspread'\n",
+ " ref_type2 = 'indexrefprice'\n",
+ " ref_2 = None\n",
+ " return pd.DataFrame({\"detach\": np.array(detach), \n",
+ " \"trancheupfrontmid\": np.array(quotes), \n",
+ " \"trancherunningmid\": np.full(4, coupon),\n",
+ " ref_type1: np.full(4, ref),\n",
+ " ref_type2: np.full(4, ref_2)})"
]
},
{
@@ -27,17 +56,18 @@
"source": [
"index_type = 'HY'\n",
"series = 35\n",
- "tenor = '5yr'\n",
"value_date = date.today()\n",
- "price = 103.875\n",
- "at_det = [0, 15, 25, 35, 100] if index_type == 'HY' else ['0', '3', '7', '15', '100']\n",
- "tranche_prices= [41.4, 90.6, 109.6, 119.7]\n",
- "\n",
- "#Build another skew to price this new series\n",
- "base_index = TrancheBasket(\"HY\", 33, \"5yr\")\n",
- "base_index.tweak()\n",
- "base_index.build_skew()\n",
- "skew=base_index.skew"
+ "df = build_tranche_quotes(index_type, 104.625, [43, 92.5, 110, 120.27])\n",
+ "new_index = ManualTrancheBasket(index_type, series, \"5yr\", value_date=value_date, tranche_quotes=df)\n",
+ "new_index.tweak()\n",
+ "new_index.build_skew()\n",
+ "result = pd.concat([pd.DataFrame(new_index.rho[0:4], index=new_index.tranche_thetas().index, columns=['att_corr']),\n",
+ " pd.DataFrame(new_index.tranche_pvs().bond_price, index=new_index.tranche_thetas().index, columns=['price']),\n",
+ " new_index.tranche_deltas(),\n",
+ " new_index.tranche_thetas()],\n",
+ " axis=1)\n",
+ "result['net_theta'] = result.theta - new_index.theta()[0] * result.delta\n",
+ "result"
]
},
{
@@ -46,29 +76,12 @@
"metadata": {},
"outputs": [],
"source": [
- "results = []\n",
- "for i in range(3):\n",
- " #set up\n",
- " rho_floor = tranche.rho[1] if i > 0 else 0.2\n",
- " rho_min = rho_floor\n",
- " rho_max = rho_floor + 0.4\n",
- " tranche = DualCorrTranche(index_type, series, tenor, attach=at_det[i], detach=at_det[i+1], corr_attach = rho_floor, corr_detach = rho_min + (rho_max -rho_min)/2, tranche_running = 500, value_date=value_date)\n",
- " tranche._index.tweak([price])\n",
- " #now loop to find it\n",
- " for j in range(20):\n",
- " if tranche.price <= tranche_prices[i]:\n",
- " rho_min = tranche.rho[1]\n",
- " else:\n",
- " rho_max = tranche.rho[1]\n",
- " tranche.rho[1] = rho_min + (rho_max - rho_min)/2\n",
- " results.append([tranche.rho[1], tranche.price, tranche.delta, tranche.gamma, tranche.theta(skew=skew), tranche.delta * float(tranche._index.theta())])\n",
- "ss_corr = tranche.rho[1]\n",
- "tranche = DualCorrTranche(index_type, series, tenor, attach=at_det[i+1], detach=100, corr_attach = ss_corr, corr_detach = .999, tranche_running = 500, value_date=value_date)\n",
- "tranche._index.tweak([price])\n",
- "results.append([tranche.rho[1], tranche.price, tranche.delta, tranche.gamma, tranche.theta(skew=skew), tranche.delta * float(tranche._index.theta())])\n",
- "results = pd.DataFrame(results, columns = ['corr', 'price', 'delta', 'gamma', 'theta', 'delta * index_theta'])\n",
- "results['theta_per_delta'] = results['theta'] / results['delta']\n",
- "results"
+ "#Implied SS\n",
+ "implied_ss = ((new_index.index_pv().bond_price - new_index.accrued()) -\n",
+ " ((new_index.K[1]-new_index.K[0]) * result.price[0] +\n",
+ " (new_index.K[2]-new_index.K[1]) * result.price[1] +\n",
+ " (new_index.K[3]-new_index.K[2]) * result.price[2]))/(new_index.K[4] - new_index.K[3])\n",
+ "implied_ss"
]
},
{
@@ -77,20 +90,19 @@
"metadata": {},
"outputs": [],
"source": [
- "#Using another skew\n",
- "mapped_results = []\n",
- "for i in range(3):\n",
- " tranche = DualCorrTranche(index_type, series, tenor, attach=at_det[i], detach=at_det[i+1], corr_attach = np.nan, corr_detach = 0.1, tranche_running = 500, value_date=value_date)\n",
- " tranche._index.tweak([price])\n",
- " tranche.mark(skew=skew)\n",
- " mapped_results.append([tranche.rho[1], tranche.price, tranche.delta, tranche.gamma, tranche.theta(skew=skew), tranche.corr01/tranche.notional])\n",
- "ss_corr = tranche.rho[1]\n",
- "tranche = DualCorrTranche(index_type, series, tenor, attach=at_det[i+1], detach=100, corr_attach = ss_corr, corr_detach = .999, tranche_running = 500, value_date=value_date)\n",
- "tranche._index.tweak([price])\n",
- "mapped_results.append([tranche.rho[1], tranche.price, tranche.delta, tranche.gamma, tranche.theta(skew=skew), np.nan])\n",
- "mapped_results = pd.DataFrame(mapped_results, columns = ['corr', 'price', 'delta', 'gamma', 'theta', 'corr01'])\n",
- "mapped_results['theta_per_delta'] = mapped_results['theta'] / mapped_results['delta']\n",
- "mapped_results"
+ "#Build previous series skew to price this new series\n",
+ "base_index = TrancheBasket(index_type, series-2, \"5yr\")\n",
+ "base_index.tweak()\n",
+ "base_index.build_skew()\n",
+ "\n",
+ "new_index.rho = base_index.map_skew(new_index)\n",
+ "result = pd.concat([pd.DataFrame(new_index.rho[0:4], index=new_index.tranche_thetas().index, columns=['att_corr']),\n",
+ " pd.DataFrame(new_index.tranche_pvs().bond_price, index=new_index.tranche_thetas().index, columns=['price']),\n",
+ " new_index.tranche_deltas(),\n",
+ " new_index.tranche_thetas()],\n",
+ " axis=1)\n",
+ "result['net_theta'] = result.theta - new_index.theta()[0] * result.delta\n",
+ "result"
]
},
{
@@ -103,9 +115,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3.8.1 64-bit",
+ "display_name": "Python 3",
"language": "python",
- "name": "python38164bitc40c8740e5d542d7959acb14be96f4f3"
+ "name": "python3"
},
"language_info": {
"codemirror_mode": {