aboutsummaryrefslogtreecommitdiffstats
path: root/python
diff options
context:
space:
mode:
Diffstat (limited to 'python')
-rw-r--r--python/pnl_explain.py60
1 files changed, 60 insertions, 0 deletions
diff --git a/python/pnl_explain.py b/python/pnl_explain.py
new file mode 100644
index 00000000..2c93cbd7
--- /dev/null
+++ b/python/pnl_explain.py
@@ -0,0 +1,60 @@
+import pandas as pd
+from functools import reduce
+from position import get_list
+from sqlalchemy import create_engine
+
+def pnl_explain(engine, identifier, start_date = None, end_date = None):
+ """ if start_date is None, pnl since inception"""
+ trades = pd.read_sql_query("SELECT * FROM bonds where identifier=%s", engine,
+ params=(identifier,), parse_dates=['trade_date', 'settle_date'],
+ index_col=['settle_date'])
+ marks = pd.read_sql_query("SELECT * FROM marks where identifier=%s", engine,
+ params=(identifier,), parse_dates = ['date'], index_col='date')
+ factors = pd.read_sql_query("SELECT * FROM factors_history where identifier=%s", engine,
+ params=(identifier,), parse_dates = ['last_pay_date', 'prev_cpn_date'],
+ index_col=['last_pay_date'])
+
+ for key in ['faceamount', 'principal_payment', 'accrued_payment']:
+ trades.loc[~trades.buysell, key] = -trades[key][~trades.buysell]
+
+ df = (marks[['price']].join(factors, how='outer').
+ join(trades[['principal_payment', 'accrued_payment', 'faceamount']], how='outer'))
+ df.sort_index(inplace=True)
+ if start_date is None:
+ start_date = trades.index.min()
+ if end_date is None:
+ end_date = pd.datetime.today()
+ dates = pd.bdate_range(start_date, end_date)
+ keys1 = ['price','factor', 'coupon', 'prev_cpn_date']
+ df[keys1] = df[keys1].fillna(method='ffill')
+ keys2 = ['losses', 'principal','interest', 'faceamount','accrued_payment', 'principal_payment']
+ df[keys2] = df[keys2].fillna(value=0)
+ df.faceamount = df.faceamount.cumsum()
+ keys = keys1 + ['faceamount']
+ df1 = df.reindex(dates, keys, method='ffill')
+ keys = ['losses', 'principal','interest', 'accrued_payment', 'principal_payment']
+ df2 = df.reindex(dates, keys, fill_value=0)
+ daily = pd.concat([df1, df2], axis = 1)
+
+ daily['unrealized_pnl'] = daily.price.diff() * daily.factor.shift()/100 * daily.faceamount
+ daily['realized_pnl'] = (daily.price/100*daily.factor.diff()+daily.principal/100) * daily.faceamount
+ daily['clean_nav'] = daily.price/100 * daily.factor * daily.faceamount
+ daily['realized_accrued'] = daily.interest/100 * daily.faceamount
+ days_accrued = daily.index - daily.prev_cpn_date
+ daily['unrealized_accrued'] = days_accrued.dt.days/360*daily.coupon/100*daily.factor*daily.faceamount
+ extra_pnl = daily.clean_nav.diff() - daily.principal_payment
+ daily.loc[daily.principal_payment>0 , 'unrealized_pnl'] += extra_pnl[daily.principal_payment>0]
+ daily.loc[daily.principal_payment<0, 'realized_pnl'] += extra_pnl[daily.principal_payment<0]
+ daily['realized_accrued'] -= daily.accrued_payment
+ daily['accrued'] = daily.unrealized_accrued.diff() + daily.realized_accrued
+ return daily[['unrealized_pnl', 'realized_pnl', 'unrealized_accrued', 'realized_accrued', 'accrued']].iloc[1:,]
+
+def pnl_explain_list(engine, id_list, start_date = None, end_date = None):
+ return reduce(lambda x,y: x.add(y, fill_value=0),
+ (pnl_explain(engine, identifier, start_date, end_date) for identifier in id_list))
+
+if __name__=="__main__":
+ engine = create_engine("postgresql://dawn_user@debian/dawndb")
+ workdate = pd.datetime.today()
+ clo_list = get_list(engine, workdate, 'Subprime')
+ df = pnl_explain_list(engine, clo_list.identifier.tolist(), '2015-10-30', '2015-11-30')