diff options
Diffstat (limited to 'python')
| -rw-r--r-- | python/analytics/black.py | 52 | ||||
| -rw-r--r-- | python/analytics/black.pyx | 34 | ||||
| -rw-r--r-- | python/analytics/sabr.py | 16 |
3 files changed, 34 insertions, 68 deletions
diff --git a/python/analytics/black.py b/python/analytics/black.py deleted file mode 100644 index 781732d9..00000000 --- a/python/analytics/black.py +++ /dev/null @@ -1,52 +0,0 @@ -from math import log, sqrt, erf -from numba import jit, float64, boolean -from scipy.stats import norm -import math - - -def d1(F, K, sigma, T): - return (log(F / K) + sigma ** 2 * T / 2) / (sigma * math.sqrt(T)) - - -def d2(F, K, sigma, T): - return d1(F, K, sigma, T) - sigma * math.sqrt(T) - - -@jit(cache=True, nopython=True) -def d12(F, K, sigma, T): - sigmaT = sigma * sqrt(T) - d1 = log(F / K) / sigmaT - d2 = d1 - d1 += 0.5 * sigmaT - d2 -= 0.5 * sigmaT - return d1, d2 - - -@jit(float64(float64), cache=True, nopython=True) -def cnd_erf(d): - """ 2 * Phi where Phi is the cdf of a Normal """ - RSQRT2 = 0.7071067811865475 - return 1 + erf(RSQRT2 * d) - - -@jit(float64(float64, float64, float64, float64, boolean), cache=True, nopython=True) -def black(F, K, T, sigma, payer=True): - d1, d2 = d12(F, K, sigma, T) - if payer: - return 0.5 * (F * cnd_erf(d1) - K * cnd_erf(d2)) - else: - return 0.5 * (K * cnd_erf(-d2) - F * cnd_erf(-d1)) - - -@jit(float64(float64, float64, float64, float64), cache=True, nopython=True) -def Nx(F, K, sigma, T): - return cnd_erf((log(F / K) - sigma ** 2 * T / 2) / (sigma * sqrt(T))) / 2 - - -def bachelier(F, K, T, sigma): - """ Bachelier formula for normal dynamics - - need to multiply by discount factor - """ - d1 = (F - K) / (sigma * sqrt(T)) - return 0.5 * (F - K) * cnd_erf(d1) + sigma * sqrt(T) * norm.pdf(d1) diff --git a/python/analytics/black.pyx b/python/analytics/black.pyx new file mode 100644 index 00000000..80d13a1a --- /dev/null +++ b/python/analytics/black.pyx @@ -0,0 +1,34 @@ +# cython: language_level=3, cdivision=True +from libc.math cimport log, sqrt, erf +from scipy.stats import norm +import cython + +cpdef double cnd_erf(double d): + """ 2 * Phi where Phi is the cdf of a Normal """ + cdef double RSQRT2 = 0.7071067811865475 + return 1 + erf(RSQRT2 * d) + + +cpdef double black(double F, double K, double T, double sigma, bint payer=True): + cdef: + double x = log(F / K) + double sigmaT = sigma * sqrt(T) + double d1 = (x + 0.5 * sigmaT * sigmaT) / sigmaT + double d2 = (x - 0.5 * sigmaT * sigmaT) / sigmaT + if payer: + return 0.5 * (F * cnd_erf(d1) - K * cnd_erf(d2)) + else: + return 0.5 * (K * cnd_erf(-d2) - F * cnd_erf(-d1)) + + +cpdef double Nx(double F, double K, double sigma, double T): + return cnd_erf((log(F / K) - sigma ** 2 * T / 2) / (sigma * sqrt(T))) / 2 + + +cpdef double bachelier(double F, double K, double T, double sigma): + """ Bachelier formula for normal dynamics + + need to multiply by discount factor + """ + cdef double d1 = (F - K) / (sigma * sqrt(T)) + return 0.5 * (F - K) * cnd_erf(d1) + sigma * sqrt(T) * norm.pdf(d1) diff --git a/python/analytics/sabr.py b/python/analytics/sabr.py index 7d66f1da..71b42cad 100644 --- a/python/analytics/sabr.py +++ b/python/analytics/sabr.py @@ -1,14 +1,8 @@ import datetime
import math
import numpy as np
-from numba import jit, float64
-@jit(
- float64(float64, float64, float64, float64, float64, float64),
- cache=True,
- nopython=True,
-)
def sabr_lognormal(alpha, rho, nu, F, K, T):
A = 1 + (0.25 * (alpha * nu * rho) + nu * nu * (2 - 3 * rho * rho) / 24.0) * T
if F == K:
@@ -21,11 +15,6 @@ def sabr_lognormal(alpha, rho, nu, F, K, T): return VOL
-@jit(
- float64(float64, float64, float64, float64, float64, float64),
- cache=True,
- nopython=True,
-)
def sabr_normal(alpha, rho, nu, F, K, T):
if F == K:
V = F
@@ -55,11 +44,6 @@ def sabr_normal(alpha, rho, nu, F, K, T): return VOL
-@jit(
- float64(float64, float64, float64, float64, float64, float64, float64),
- cache=True,
- nopython=True,
-)
def sabr(alpha, beta, rho, nu, F, K, T):
if beta == 0.0:
return sabr_normal(alpha, rho, nu, F, K, T)
|
