diff options
Diffstat (limited to 'python')
| -rw-r--r-- | python/load_ms_data.py | 67 |
1 files changed, 67 insertions, 0 deletions
diff --git a/python/load_ms_data.py b/python/load_ms_data.py new file mode 100644 index 00000000..856a418c --- /dev/null +++ b/python/load_ms_data.py @@ -0,0 +1,67 @@ +from analytics import CreditIndex +from utils.db import serenitas_pool +import numpy as np +import pandas as pd + +def load_sheet(index, series): + df = pd.read_excel("/home/serenitas/CorpCDOs/Tranche_data/USTrancheClientFile11072019.XLS", + sheet_name=f'5Y {index.upper()}{series}', skiprows=[0, 1, 2, 3, 4]) + + sql_str = ("INSERT INTO tranche_quotes(" + "quotedate, index, series, version, tenor, attach, detach, " + "trancheupfrontmid, trancherunningmid, indexrefprice, " + "tranchedelta, corratdetachment, quotesource) " + f"VALUES({','.join(['%s'] * 13)})") + + df = df.set_index("Date") + if index == "HY": + cols = [0., 0.15, 0.25, 0.35] + else: + cols = [0., 0.03, 0.07, 0.15] + if index == "HY": + df_upfront = df[['0% - 15%', '15% - 25%', '25% - 35%', '35% - 100%']] + else: + df_upfront = df[['0-3%', '3-7%', '7-15%', '15-100%']] + df_upfront.columns = cols + df_upfront = df_upfront.stack() + df_upfront.name = 'upfront' + df_delta = df[['Delta', 'Delta.1', 'Delta.2', 'Delta.3']] + df_delta.columns = cols + df_delta = df_delta.stack() + df_delta.name = 'delta' + df_corr = df[['Correlation', 'Correlation.1', 'Correlation.2']] + df_corr.columns = cols[:-1] + df_corr = df_corr.stack() + df_corr.name = 'correlation' + df_detach = pd.DataFrame(np.repeat([cols[1:] + [1.]], len(df.index), 0), + index=df.index, columns=cols).stack() + df_detach.name='detach' + df_merged = pd.concat([df_upfront, df_delta, df_corr, df_detach], axis=1) + df_merged.index.names = ['date', 'attach'] + if index == "HY": + df_merged['price'] = 100. * (1 - df_merged.upfront) + else: + df_merged['price'] = 100 * df_merged.upfront + df_merged = df_merged.reset_index("attach") + df_final = df_merged.join(df['Spread (bp)']) + df_final = df_final.rename(columns={'Spread (bp)': 'indexspread'}) + + conn = serenitas_pool.getconn() + credit_index = CreditIndex(index, series, "5yr") + with conn.cursor() as c: + for t in df_final.itertuples(): + credit_index.value_date = t.Index.date() + credit_index.spread = t.indexspread + c.execute(sql_str, (t.Index + pd.DateOffset(hours=17), index, series, + credit_index.version, "5yr", + int(t.attach * 100), + int(t.detach*100), t.price, 500, credit_index.price, t.delta, t.correlation, "MSre")) + conn.commit() + serenitas_pool.putconn(conn) + +if __name__ == "__main__": + for index in ("IG", "HY"): + for series in (25, 27, 29, 31, 33): + if index == "IG" and series <= 29: + continue + load_sheet(index, series) |
