aboutsummaryrefslogtreecommitdiffstats
path: root/python
diff options
context:
space:
mode:
Diffstat (limited to 'python')
-rw-r--r--python/load_ms_data.py67
1 files changed, 67 insertions, 0 deletions
diff --git a/python/load_ms_data.py b/python/load_ms_data.py
new file mode 100644
index 00000000..856a418c
--- /dev/null
+++ b/python/load_ms_data.py
@@ -0,0 +1,67 @@
+from analytics import CreditIndex
+from utils.db import serenitas_pool
+import numpy as np
+import pandas as pd
+
+def load_sheet(index, series):
+ df = pd.read_excel("/home/serenitas/CorpCDOs/Tranche_data/USTrancheClientFile11072019.XLS",
+ sheet_name=f'5Y {index.upper()}{series}', skiprows=[0, 1, 2, 3, 4])
+
+ sql_str = ("INSERT INTO tranche_quotes("
+ "quotedate, index, series, version, tenor, attach, detach, "
+ "trancheupfrontmid, trancherunningmid, indexrefprice, "
+ "tranchedelta, corratdetachment, quotesource) "
+ f"VALUES({','.join(['%s'] * 13)})")
+
+ df = df.set_index("Date")
+ if index == "HY":
+ cols = [0., 0.15, 0.25, 0.35]
+ else:
+ cols = [0., 0.03, 0.07, 0.15]
+ if index == "HY":
+ df_upfront = df[['0% - 15%', '15% - 25%', '25% - 35%', '35% - 100%']]
+ else:
+ df_upfront = df[['0-3%', '3-7%', '7-15%', '15-100%']]
+ df_upfront.columns = cols
+ df_upfront = df_upfront.stack()
+ df_upfront.name = 'upfront'
+ df_delta = df[['Delta', 'Delta.1', 'Delta.2', 'Delta.3']]
+ df_delta.columns = cols
+ df_delta = df_delta.stack()
+ df_delta.name = 'delta'
+ df_corr = df[['Correlation', 'Correlation.1', 'Correlation.2']]
+ df_corr.columns = cols[:-1]
+ df_corr = df_corr.stack()
+ df_corr.name = 'correlation'
+ df_detach = pd.DataFrame(np.repeat([cols[1:] + [1.]], len(df.index), 0),
+ index=df.index, columns=cols).stack()
+ df_detach.name='detach'
+ df_merged = pd.concat([df_upfront, df_delta, df_corr, df_detach], axis=1)
+ df_merged.index.names = ['date', 'attach']
+ if index == "HY":
+ df_merged['price'] = 100. * (1 - df_merged.upfront)
+ else:
+ df_merged['price'] = 100 * df_merged.upfront
+ df_merged = df_merged.reset_index("attach")
+ df_final = df_merged.join(df['Spread (bp)'])
+ df_final = df_final.rename(columns={'Spread (bp)': 'indexspread'})
+
+ conn = serenitas_pool.getconn()
+ credit_index = CreditIndex(index, series, "5yr")
+ with conn.cursor() as c:
+ for t in df_final.itertuples():
+ credit_index.value_date = t.Index.date()
+ credit_index.spread = t.indexspread
+ c.execute(sql_str, (t.Index + pd.DateOffset(hours=17), index, series,
+ credit_index.version, "5yr",
+ int(t.attach * 100),
+ int(t.detach*100), t.price, 500, credit_index.price, t.delta, t.correlation, "MSre"))
+ conn.commit()
+ serenitas_pool.putconn(conn)
+
+if __name__ == "__main__":
+ for index in ("IG", "HY"):
+ for series in (25, 27, 29, 31, 33):
+ if index == "IG" and series <= 29:
+ continue
+ load_sheet(index, series)