diff options
Diffstat (limited to 'python')
| -rw-r--r-- | python/dtcc_sdr.py | 56 |
1 files changed, 56 insertions, 0 deletions
diff --git a/python/dtcc_sdr.py b/python/dtcc_sdr.py new file mode 100644 index 00000000..ab264e97 --- /dev/null +++ b/python/dtcc_sdr.py @@ -0,0 +1,56 @@ +import datetime +import io +import pandas as pd +import requests +import zipfile + +from pathlib import Path + +def download_credit_slices(d: datetime.date) -> None: + for i in range(1, 400): + url = f"https://kgc0418-tdw-data2-0.s3.amazonaws.com/slices/SLICE_CREDITS_{d:%Y_%m_%d}_{i}.zip" + r = requests.get(url) + if r.status_code != 200: + continue + with zipfile.ZipFile(io.BytesIO(r.content)) as z: + z.extractall() + +def download_cumulative_credit(d: datetime.date) -> None: + url = f"https://kgc0418-tdw-data2-0.s3.amazonaws.com/slices/CUMULATIVE_CREDITS_{d:%Y_%m_%d}.zip" + r = requests.get(url) + if r.status_code != 200: + return + with zipfile.ZipFile(io.BytesIO(r.content)) as z: + z.extractall(path="/home/serenitas/CorpCDOs/data/DTCC") + +def load_option_data(): + base_dir = Path("/home/serenitas/CorpCDOs/data/DTCC/") + df = pd.concat([ + pd.read_csv(f, + parse_dates=["EXECUTION_TIMESTAMP", "EFFECTIVE_DATE", "END_DATE"]) + for f in base_dir.glob("*.csv")]) + df = df[df.OPTION_FAMILY.notnull()] + df = df.dropna(axis=1, how='all') + del df["ASSET_CLASS"] + del df["OPTION_FAMILY"] + for col in ["INDICATION_OF_END_USER_EXCEPTION", + "INDICATION_OF_OTHER_PRICE_AFFECTING_TERM", + "BLOCK_TRADES_AND_LARGE_NOTIONAL_OFF-FACILITY_SWAPS"]: + df[col] = df[col].map({"N": False, "Y": True}) + for col in ["ACTION", "CLEARED", "PRICE_NOTATION_TYPE", "OPTION_TYPE", + "OPTION_CURRENCY", "INDICATION_OF_COLLATERALIZATION", "EXECUTION_VENUE", + "DAY_COUNT_CONVENTION", "NOTIONAL_CURRENCY_1", "SETTLEMENT_CURRENCY"]: + df[col] = df[col].astype("category") + for col in ["OPTION_PREMIUM", "PRICE_NOTATION", "OPTION_STRIKE_PRICE"]: + df[col] = df[col].str.replace(",", "").astype("float") + df.UNDERLYING_ASSET_1 = df.UNDERLYING_ASSET_1.str.rsplit(":", n=1, expand=True)[1] + for col in ["EFFECTIVE_DATE", "OPTION_EXPIRATION_DATE", "OPTION_LOCK_PERIOD"]: + df[col+"_parsed"] = pd.to_datetime(df[col], errors="coerce") + df.ORIGINAL_DISSEMINATION_ID = df.ORIGINAL_DISSEMINATION_ID.astype("Int64") + return df + +if __name__ == "__main__": + pass + # dr = pd.bdate_range("2018-01-01", "2019-02-11") + # for d in dr: + # download_cumulative_credit(d) |
