1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
library(doParallel)
library(yaml)
hostname <- system("hostname", intern=TRUE)
if(hostname=="debian"){
registerDoParallel(8)
}else{
registerDoParallel(4)
}
args <- commandArgs(trailingOnly=TRUE)
if(.Platform$OS.type == "unix"){
root.dir <- "/home/share/CorpCDOs"
}else{
root.dir <- "//WDSENTINEL/share/CorpCDOs"
}
if(length(args) >= 1){
workdate <- as.Date(args[1])
}else{
workdate <- Sys.Date()
}
if(length(args) >=2){
argslist <- strsplit(args[-1], ",")
dealnames <- unlist(lapply(argslist, function(x)x[1]))
reinvflags <- unlist(lapply(argslist, function(x)x[2]))
}else{
data <- read.table(file.path(root.dir, "scripts", "deals_to_price.txt"),
colClasses=c("character", "logical"))
dealnames <- data$V1
reinvflags <- data$V2
unlink(file.path(root.dir, "scripts", "deals_to_price.txt"))
}
source(file.path(root.dir, "code", "R", "intex_deal_functions.R"))
source(file.path(root.dir, "code", "R", "index_definitions.R"))
source(file.path(root.dir, "code", "R", "etdb.R"))
source(file.path(root.dir, "code", "R", "cds_functions_generic.R"))
source(file.path(root.dir, "code", "R", "cds_utils.R"))
get.reinvassets <- function(dealname, workdate){
r <- list()
sqlstr <- sprintf("select * from et_historicaldealinfo('%s', '%s') where ReinvFlag Is true",
dealname, workdate)
data <- dbGetQuery(dbCon, sqlstr)
if(nrow(data)>0){
for(i in 1:nrow(data)){
r[[data$issuername[i]]] <- list(coupontype=data$fixedorfloat[i], liborfloor=data$liborfloor[i])
}
}
return( r )
}
calibration.date <- prevBusDay(workdate)
calibration <- read.table(file.path(root.dir, "Scenarios", "Calibration",
paste0("calibration-", calibration.date,".csv")), sep=",", header=T)
Z <- calibration$Z
w <- calibration$w
Ngrid <- 201
MarkitData <- getMarkitIRData(calibration.date)
futurequotes <- read.csv(file.path(root.dir, "data", "Yield Curves",
sprintf("futures-%s.csv", calibration.date)), header=F)
setEvaluationDate(as.Date(MarkitData$effectiveasof))
setCalendarContext("UnitedStates/GovernmentBond")
L1m <- buildMarkitYC(MarkitData, futurequotes[,2], dt = 1/12)
L2m <- buildMarkitYC(MarkitData, futurequotes[,2], dt = 1/6)
L3m <- buildMarkitYC(MarkitData, futurequotes[,2])
L6m <- buildMarkitYC(MarkitData, futurequotes[,2], dt = 1/2)
L12m <- buildMarkitYC(MarkitData, futurequotes[,2], dt = 1)
support <- seq(0, 1, length = Ngrid)
recoverylag <- 90 ##days
## reinvestment parameters
## need to match parameters in build_portfolios.R
reinvspread <- 0.04
reinvfixed <- 0.07
basecase.rollingmaturity <- 84 ##months
reinvlag <- 3 ##months
n.scenarios <- 100
recov.adj <- 1
for(j in seq_along(dealnames)){
load(file.path(root.dir, "Scenarios", paste("Portfolios", workdate, sep="_"),
paste(dealnames[j], "RData", sep=".")))
if(is.na(deal.data$"Reinv End Date")){
reinvflags[j] <- FALSE
}
dp <- A$DP
pp <- A$PP
dpmod <- MFupdate.probC(Z, w, deal.portfolio$beta, dp)
ppmod <- MFupdate.probC(-Z, w, deal.portfolio$beta, pp)
dist.joint <- MFlossdist.prepay.joint(w, Z, deal.portfolio$beta, dp, dpmod, pp, ppmod,
deal.weights, 1-S, Ngrid)
distDR <- dist.transform(dist.joint)
## compute E(R|D)
R <- matrix(0, Ngrid, dim(distDR)[1])
for(t in 1:dim(distDR)[1]){
R[,t] <- sweep(distDR[t,,], 1, rowSums(distDR[t,,]), "/") %*% support
R[1,t] <- 0
if(t >= 2){
R[,t] <- pmax(R[,t], R[,t-1])
}
}
## compute scenariosd
scenariosd <- matrix(0, n.scenarios, dim(distDR)[1])
scenariosr <- matrix(0, n.scenarios, dim(distDR)[1])
percentiles <- seq(0, 1, 1/n.scenarios)
for(t in 1:dim(distDR)[1]){
D <- rowSums(distDR[t,,])
Dfun <- splinefun(c(0, cumsum(D)), c(0, support), "monoH.FC")
Rfun <- approxfun(support, R[,t], rule=2)
for(i in 1:n.scenarios){
## this is roughtly E(D|D is in ith percentile)
## using trapezoidal approximation
scenariosd[i,t] <- 0.5 * (Dfun((i-1)*0.01)+Dfun(i*0.01))
if(t>=2 && scenariosd[i,t] < scenariosd[i,t-1]){
scenariosd[i,t] <- scenariosd[i,t-1]
}
scenariosr[i,t] <- Rfun(scenariosd[i,t])
if(t>=2 && scenariosr[i,t] < scenariosr[i,t-1]){
scenariosr[i,t] <- scenariosr[i,t-1]
}
}
}
## we need to adjust the recovery because intex has some embedded amortization assumptions
## that we can't turn off (multiply by recov.adj)
intexrecov <- matrix(0, n.scenarios, dim(distDR)[1])
for(i in 1:dim(distDR)[1]){
if(i==1){
intexrecov[,i] <- recov.adj * (scenariosr[,i]/scenariosd[,1])
}else{
intexrecov[,i] <- recov.adj * (scenariosr[,i]-scenariosr[,i-1])/(scenariosd[,i]-scenariosd[,i-1])
}
}
cdr <- cdrfromscenarios(scenariosd, deal.dates)
## linear approximation for monthly scenarios
deal.data <- getdealdata(dealnames[j])
deal.datesmonthly <- getdealschedule(deal.data, "1 month")
deal.datesmonthlylagged <- getdealschedule(deal.data, "1 month", workdate, 92)
cdrmonthly <- matrix(0, n.scenarios, length(deal.datesmonthly))
recoverymonthly <- matrix(0, n.scenarios, length(deal.datesmonthly))
scenariosrmonthly <- matrix(0, n.scenarios, length(deal.datesmonthly))
scenariosdmonthly <- matrix(0, n.scenarios, length(deal.datesmonthly))
for(i in 1:n.scenarios){
cdrmonthly[i,] <- approx(deal.dates, cdr[i,], deal.datesmonthly, rule=2)$y
recoverymonthly[i,] <- approx(deal.dates, intexrecov[i,], deal.datesmonthly, rule=2)$y
scenariosrmonthly[i,] <- approx(deal.dates, scenariosr[i,], deal.datesmonthly, rule=2)$y
scenariosdmonthly[i,] <- approx(deal.dates, scenariosd[i,], deal.datesmonthly, rule=2)$y
}
recoverymonthly <- pmin(recoverymonthly,1)
recoverymonthly[!is.finite(recoverymonthly)] <- 100
## compute reinvestment price
if(!is.na(deal.data$"Reinv End Date") && deal.data$"Reinv End Date" <= workdate){
## we cap rolling maturity at the current weighted average maturity of the portfolio
rollingmaturity <- (crossprod(sapply(deal.portfolio$SC, creditcurve.maturity),
deal.portfolio$notional)/sum(deal.portfolio$notional)
- as.numeric(workdate))/365*12
}else{
rollingmaturity <- basecase.rollingmaturity
}
## DC <- DiscountCurve(L3m$params, L3m$tsQuotes, yearFrac(L3m$params$tradeDate, deal.datesmonthlylagged))
## df <- DC$discounts
## forwards <- DC$forwards
cdrmonthly.dt <- data.table(date=deal.datesmonthly, t(cdrmonthly), key="date")
recoverymonthly.dt <- data.table(date=deal.datesmonthly, t(recoverymonthly), key="date")
reinvassets <- get.reinvassets(dealnames[j], workdate)
reinvprices <- list()
if(reinvflags[j] && length(reinvassets)>0){
for(assetname in names(reinvassets)){
asset <- reinvassets[[assetname]]
if(asset$coupontype=="FLOAT") {
coupon <- reinvspread
}else{
coupon <- reinvfixed
}
##reinvest tweak
#coupon <- coupon-0.01
reinvprices[[assetname]] <- foreach(date = iter(deal.datesmonthly), .combine=c) %dopar% {
100 * forwardportfolioprice2(cdrmonthly.dt, recoverymonthly.dt, date,
min(date+rollingmaturity*30, deal.data$maturity),
asset$coupontype, coupon, asset$liborfloor/100)
}
## reinvprices[[assetname]] <- foreach(date = iter(deal.datesmonthly), .combine=c) %dopar% {
## 100 * forwardportfolioprice(deal.portfolio, date,
## min(date+rollingmaturity*30, deal.data$maturity),
## asset$coupontype, coupon, asset$liborfloor/100)
## }
## for(i in seq_along(deal.datesmonthly)){
## date <- deal.datesmonthly[i]
## reinvprices[[assetname]] <-
## 100 * forwardportfolioprice2(cdrmonthly.dt, recoverymonthly.dt, date,
## min(date+rollingmaturity*30, deal.data$maturity),
## asset$coupontype, coupon, asset$liborfloor/100)
## }
}
}
save.dir <- file.path(root.dir, "Scenarios", paste("Intex curves", workdate, sep="_"), "csv")
if(!file.exists(save.dir)){
dir.create(save.dir, recursive = T)
}
write.table(cdrmonthly,
file= file.path(save.dir, paste0(dealnames[j],"-cdr.csv")),
row.names=F, col.names=F, sep=",")
write.table(100 * recoverymonthly,
file=file.path(save.dir, paste0(dealnames[j],"-recovery.csv")),
row.names=F, col.names=F, sep=",", na="NaN")
write.table(reinvprices, file = file.path(save.dir, paste0(dealnames[j], "-reinvprices.csv")),
row.names=F, col.names=T, sep=",")
configfile <- file.path(save.dir, paste0(dealnames[j], ".config"))
config <- list(rollingmat = as.integer(rollingmaturity),
reinvflag = reinvflags[j])
cat(as.yaml(config), file = configfile)
save(scenariosd, scenariosr, dist.joint, file=file.path(save.dir, paste0(dealnames[j], ".RData")),
compress="xz")
cat("generated scenarios for:", dealnames[j], "\n")
}
|