aboutsummaryrefslogtreecommitdiffstats
path: root/R/build_scenarios.R
blob: f5255836a0ae90020c0c32c11b7fb012829cbd7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
library(doParallel)
library(yaml)

hostname <- system("hostname", intern=TRUE)
if(hostname=="debian"){
    registerDoParallel(8)
}else{
    registerDoParallel(4)
}

args <- commandArgs(trailingOnly=TRUE)

if(.Platform$OS.type == "unix"){
    root.dir <- "/home/share/CorpCDOs"
}else{
    root.dir <- "//WDSENTINEL/share/CorpCDOs"
}

code.dir <- if(Sys.getenv("CODE_DIR")=="") root.dir else Sys.getenv("CODE_DIR")
source(file.path(code.dir, "code", "R", "intex_deal_functions.R"), chdir=TRUE)
source(file.path(code.dir, "code", "R", "yieldcurve.R"))
source(file.path(code.dir, "code", "R", "serenitasdb.R"), chdir=TRUE)
source(file.path(code.dir, "code", "R", "tranche_functions.R"))

if(interactive()) {
    tradedate <- as.Date("2016-02-25")
    dealnames <- c("beto", "ozlmf5")
    reinvflags <- c(TRUE, TRUE)
}else{
    tradedate <- as.Date(args[1])
    if(length(args) >=2){
        argslist <- strsplit(args[-1], ",")
        dealnames <- unlist(lapply(argslist, function(x)x[1]))
        reinvflags <- as.logical(unlist(lapply(argslist, function(x)x[2])))
    }
}

calibration.date <- addBusDay(tradedate, -1)
settledate <- addBusDay(tradedate, 3)
calibration <- read.table(file.path(root.dir, "Scenarios", "Calibration",
                                    paste0("calibration-", calibration.date,".csv")), sep=",", header=T)
Z <- calibration$Z
w <- calibration$w
exportYC(calibration.date)

Ngrid <- 201
support <- seq(0, 1, length = Ngrid)
n.scenarios <- 100
recov.adj <- 1
params <- yaml.load_file(file.path(root.dir, "code", "etc", "params.yml"))

for(j in seq_along(dealnames)){
  load(file.path(root.dir, "Scenarios", paste("Portfolios", tradedate, sep="_"),
                 paste(dealnames[j], "RData", sep=".")))
  if(is.na(deal.data$reinv_end_date)){
    reinvflags[j] <- FALSE
  }
  dp <- A$DP
  pp <- A$PP
  dpmod <- MFupdate.prob(Z, w, deal.portfolio$beta, dp)
  ppmod <- MFupdate.prob(-Z, w, deal.portfolio$beta, pp)
  dist.joint <- MFlossdist.prepay.joint(w, Z, deal.portfolio$beta, dp, dpmod, pp, ppmod,
                                        deal.weights, 1-S, Ngrid)
  dist.joint <- pmax(dist.joint, 0)
  distDR <- dist.transform(dist.joint)
  ## compute E(R|D)
  R <- matrix(0, Ngrid, dim(distDR)[1])
  for(t in 1:dim(distDR)[1]){
    R[,t] <- sweep(distDR[t,,], 1, rowSums(distDR[t,,]), "/") %*% support
    R[1,t] <- 0
    if(t >= 2){
      R[,t] <- pmax(R[,t], R[,t-1])
    }
  }

  ## compute scenariosd
  scenariosd <- matrix(0, n.scenarios, dim(distDR)[1])
  scenariosr <- matrix(0, n.scenarios, dim(distDR)[1])
  percentiles <- seq(0, 1, 1/n.scenarios)
  for(t in 1:dim(distDR)[1]){
    D <- rowSums(distDR[t,,])
    Dfun <- splinefun(c(0, cumsum(D)), c(0, support), "hyman")
    Rfun <- approxfun(support, R[,t], rule=2)
    for(i in 1:n.scenarios){
      ## this is roughtly E(D|D is in ith percentile)
        ## using trapezoidal approximation
      if(i==1){
          scenariosd[i,t] <- 0.5* Dfun(0.01)
      }else{
          scenariosd[i,t] <- 0.5 * (Dfun((i-1)*0.01)+Dfun(i*0.01))
      }
      if(t>=2 && scenariosd[i,t] < scenariosd[i,t-1]){
        scenariosd[i,t] <- scenariosd[i,t-1]
      }
      scenariosr[i,t] <- Rfun(scenariosd[i,t])
      if(t>=2 && scenariosr[i,t] < scenariosr[i,t-1]){
        scenariosr[i,t] <- scenariosr[i,t-1]
      }
    }
  }

  ## we need to adjust the recovery because intex has some embedded amortization assumptions
  ## that we can't turn off (multiply by recov.adj)
  intexrecov <- matrix(0, n.scenarios, dim(distDR)[1])
  for(i in 1:dim(distDR)[1]){
    if(i==1){
      intexrecov[,i] <- recov.adj * (scenariosr[,i]/scenariosd[,1])
    }else{
      intexrecov[,i] <- recov.adj * (scenariosr[,i]-scenariosr[,i-1])/(scenariosd[,i]-scenariosd[,i-1])
    }
  }
  deal.dates <- getdealschedule(deal.data, "Quarterly")
  deal.dates <- deal.dates[deal.dates>=settledate]
  cdr <- cdrfromscenarios(scenariosd, deal.dates, tradedate)
  ## linear approximation for monthly scenarios
  deal.data <- getdealdata(dealnames[j], tradedate)
  deal.datesmonthly <- getdealschedule(deal.data, "Monthly")
  deal.datesmonthly <- deal.datesmonthly[deal.datesmonthly>=settledate]

  cdrmonthly <- matrix(0, n.scenarios, length(deal.datesmonthly))
  recoverymonthly <- matrix(0, n.scenarios, length(deal.datesmonthly))
  scenariosrmonthly <- matrix(0, n.scenarios, length(deal.datesmonthly))
  scenariosdmonthly <- matrix(0, n.scenarios, length(deal.datesmonthly))
  for(i in 1:n.scenarios){
    cdrmonthly[i,] <- approx(deal.dates, cdr[i,], deal.datesmonthly, rule=2)$y
    recoverymonthly[i,] <- approx(deal.dates, intexrecov[i,], deal.datesmonthly, rule=2)$y
    scenariosrmonthly[i,] <- approx(deal.dates, scenariosr[i,], deal.datesmonthly, rule=2)$y
    scenariosdmonthly[i,] <- approx(deal.dates, scenariosd[i,], deal.datesmonthly, rule=2)$y
  }
  recoverymonthly <- pmin(recoverymonthly,1)
  recoverymonthly[!is.finite(recoverymonthly)] <- 100

  if(!is.na(deal.data$reinv_end_date) && deal.data$reinv_end_date <= tradedate){
      ## we cap rolling maturity at the current weighted average maturity of the portfolio
      rollingmaturity <- (crossprod(sapply(deal.portfolio$SC, creditcurve.maturity),
                                    deal.portfolio$notional)/sum(deal.portfolio$notional)
                          - as.numeric(tradedate))
  }else{
      rollingmaturity <- params$rollingmaturity
  }

  ## compute reinvestment price
  cdrmonthly.dt <- data.table(date=deal.datesmonthly, t(cdrmonthly), key="date")
  recoverymonthly.dt <- data.table(date=deal.datesmonthly, t(recoverymonthly), key="date")
  if(reinvflags[j]){
      reinvprices <- compute.reinvprices(dealnames[j], cdrmonthly.dt, recoverymonthly.dt,
                                         params, rollingmaturity, tradedate)
  }else{
      reinvprices <- list()
  }

  save.dir <- file.path(root.dir, "Scenarios", paste("Intex curves", tradedate, sep="_"), "csv")
  if(!file.exists(save.dir)){
    dir.create(save.dir, recursive = T)
  }

  write.table(cdrmonthly,
              file= file.path(save.dir, paste0(dealnames[j],"-cdr.csv")),
              row.names=F, col.names=F, sep=",")
  write.table(100 * recoverymonthly,
              file=file.path(save.dir, paste0(dealnames[j],"-recovery.csv")),
              row.names=F, col.names=F, sep=",", na="NaN")
  write.table(reinvprices, file = file.path(save.dir, paste0(dealnames[j], "-reinvprices.csv")),
              row.names=F, col.names=T, sep=",")

  configfile <- file.path(save.dir, paste0(dealnames[j], ".config"))
  config <- list(rollingmat = as.integer(rollingmaturity/365*12),
                 reinvflag = reinvflags[j])
  cat(as.yaml(config), file = configfile)
  save(scenariosd, scenariosr, dist.joint, file=file.path(save.dir, paste0(dealnames[j], ".RData")),
       compress="xz")

  cat("generated scenarios for:", dealnames[j], "\n")
}