aboutsummaryrefslogtreecommitdiffstats
path: root/R/calibrate_tranches.R
blob: 3e2599fcfb79e079fd396a534c4414717fc87b5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
library("parallel")
setwd("//WDSENTINEL/share/CorpCDOs/R")
source("cds_utils.R")
source("cds_functions_generic.R")
source("index_definitions.R")
source("tranche_functions.R")
source("yieldcurve.R")
source("optimization.R")

cl <- makeCluster(6)

MarkitData <- getMarkitIRData()
L1m <- buildMarkitYC(MarkitData, dt = 1/12)
L2m <- buildMarkitYC(MarkitData, dt = 1/6)
L3m <-  buildMarkitYC(MarkitData)
L6m <- buildMarkitYC(MarkitData, dt = 1/2)
setEvaluationDate(as.Date(MarkitData$effectiveasof))

## calibrate HY19
## calibrate the single names curves
singlenames.data <- read.table(file="clipboard", sep="\t", header=T)
nondefaulted <- singlenames.data[!singlenames.data$ticker %in% hy17$defaulted,]
bps <- 1e-4

cdsdates <- as.Date(character(0))
for(tenor in paste0(1:5, "y")){
    cdsdates <- c(cdsdates, cdsMaturity(tenor))
}

## clusterEvalQ(cl, {setClass("abstractcurve")
##                   setClass("defaultcurve", contains="abstractcurve",
##                            representation(dates="Date", hazardrates="numeric"))
##                   setClass("creditcurve", representation(issuer="character", startdate="Date",
##                                                          recovery="numeric", curve="defaultcurve"))})
## clusterExport(cl, list("nondefaulted", "cdsdates", "cdshazardrate", "today",
##                        "bps", "couponSchedule", "nextIMMDate", "DiscountCurve", "L3m"))
## test <- parSapply(cl, 1:nrow(nondefaulted), parf)

## parf <- function(i){
##     SC <- new("creditcurve",
##               recovery=nondefaulted$recovery[i]/100,
##               startdate=today(),
##               issuer=as.character(nondefaulted$ticker[i]))
##     quotes <- data.frame(maturity=cdsdates, upfront = as.numeric(nondefaulted[i,5:9])*0.01,
##                          running = rep(nondefaulted$running[i]*bps,5))
##     return( cdshazardrate(quotes, nondefaulted$recovery[i]/100))
## }

hy19portfolio <- c()
for(i in 1:nrow(nondefaulted)){
    SC <- new("creditcurve",
              recovery=nondefaulted$recovery[i]/100,
              startdate=today(),
              issuer=as.character(nondefaulted$ticker[i]))
    quotes <- data.frame(maturity=cdsdates, upfront = as.numeric(nondefaulted[i,4:8])*0.01,
                         running=rep(nondefaulted$running[i]*bps, 5))
    SC@curve <- cdshazardrate(quotes, nondefaulted$recovery[i]/100)
    hy19portfolio <- c(hy19portfolio, SC)
}

issuerweights <- rep(1/length(hy19portfolio), length(hy19portfolio))
hy19$indexref <- 0.99
hy19portfolio.tweaked <- tweakcurves(hy19portfolio, hy19)

SurvProb <- SPmatrix(hy19portfolio.tweaked, hy19)
## load common parameters
K <- c(0, 0.15, 0.25, 0.35, 1)
Kmodified <- adjust.attachments(K, hy19$loss, hy19$factor)
tranche.upf <- c(37.5625, 87.25, 101.8125, 115.0625)
tranche.running <- c(0.05, 0.05, 0.05, 0.05)

Ngrid <- 2*nrow(nondefaulted)+1
recov <- sapply(hy19portfolio.tweaked, attr, "recovery")
cs <- couponSchedule(nextIMMDate(today()), hy19$maturity,"Q", "FIXED", 0.05, 0)

## calibrate the tranches using base correlation
rhovec <- c()
f <- function(rho, ...){
    temp <- BClossdistC(SurvProb, issuerweights, recov, rho, Ngrid)
    bp <- 100*(1+1/(Kmodified[i]-Kmodified[i-1]) *
               (tranche.pv(temp$L, temp$R, cs, 0, Kmodified[i], Ngrid) -
                tranche.pv(oldtemp$L, oldtemp$R, cs, 0, Kmodified[i-1], Ngrid)))
    return( abs(tranche.upf[i-1]-bp))
}

for(i in 2:length(Kmodified)){
    rho <- optimize(f, interval=c(0,1),
                    SurvProb, issuerweights, recov, Ngrid, tranche.upf, Kmodified, cs, oldtemp)$minimum
    oldtemp <- BClossdistC(SurvProb, issuerweights, recov, rho, Ngrid)
    rhovec <- c(rhovec, rho)
}

rhovec <- c(0, rhovec)
deltas <- c()
for(i in 2:5){
    deltas <- c(deltas, BCtranche.delta(hy19portfolio.tweaked, hy19, 0.05, K[i-1], K[i], rhovec[i-1], rhovec[i], Ngrid))
}

##calibrate by modifying the factor distribution
bottomup <- 1:3
topdown <- 2:4
n.int <- 500
n.credit <- length(hy19portfolio)
errvec <- c()
quadrature <- gauss.quad.prob(n.int, "normal")
w <- quadrature$weights
Z <- quadrature$nodes
w.mod <- w
defaultprob <- 1 - SurvProb
p <- defaultprob
rho <- 0.45

clusterExport(cl, list("shockprob", "issuerweights", "rho", "Z", "lossrecovdist.term",
                       "lossrecovdist", "lossdistC", "Ngrid",
                       "tranche.pvvec", "tranche.pv", "tranche.pl", "tranche.cl",
                       "trancheloss", "trancherecov", "pos", "Kmodified", "cs"))
## TODO: investigate if this is the right thing w.r.t recovery
parf <- function(i){
    pshocked <- apply(p, 2, shockprob, rho=rho, Z=Z[i])
    S <- 1 - Rstoch[i,,]
    dist <- lossrecovdist.term(pshocked,, issuerweights, S, Ngrid)
    return( tranche.pvvec(Kmodified, dist$L, dist$R, cs))
}

for(l in 1:100){
    Rstoch <- array(0, dim=c(n.int, n.credit, ncol(SurvProb)))
    for(t in 1:ncol(SurvProb)){
        for(i in 1:n.credit){
            Rstoch[,i,t] <- stochasticrecov(recov[i], 0, Z, w.mod, rho, defaultprob[i,t], p[i,t])
        }
    }

    clusterExport(cl, list("Rstoch", "p"))
    result <- parSapply(cl, 1:n.int, parf)
    ## solve the optimization problem
    program <- KLfit(100*(result[bottomup,]+1), w, tranche.upf[bottomup])


    err <- 0
    for(i in 1:n.credit){
        for(j in 1:ncol(p)){
            err <- err + abs(crossprod(shockprob(p[i,j], rho, Z), program$weight) - defaultprob[i,j])
        }
    }
    errvec <- c(errvec, err)

    ## update the new probabilities
    p <- MFupdate.prob(Z, program$weight, rho, defaultprob)

    errvec <- c(errvec, err)
    w.mod <- program$weight
    cat(err,"\n")
}

write.table(data.frame(Z=Z, w=w.mod), file=paste0("calibration-", Sys.Date(), ".csv"), col.names=T, row.names=F, sep=",")

## computes MFdeltas
newportf <- hy19portfolio.tweaked
eps <- 1e-4
for(i in 1:length(newportf)){
    newportf[[i]]@curve@hazardrates <- hy19portfolio.tweaked[[i]]@curve@hazardrates * (1 + eps)
}
SurvProb2 <- SPmatrix(newportf, hy19)
p2 <- MFupdate.prob(Z, w.mod, rho, 1-SurvProb2)
dPVtranches <- MFtranche.pv(cl, cs, w.mod, rho, 1-SurvProb2, p2, issuerweights) - MFtranche.pv(cl, cs, w.mod, rho, defaultprob, p, issuerweights)
dPVindex <- indexpv(newportf, hy19)-indexpv(hy19portfolio.tweaked, hy19)
MFdeltas <- dPVtranches/dPVindex

#global deltas
PVtranches <- MFtranche.pv(cl, cs, w.mod, rho, 1-SurvProb, p, issuerweights, Kmodified)
pnlindex <- 1+t(PVtranches$pv.w)%*%diff(Kmodified)-hy19$indexref
plot(1-cumsum(w.mod),PVindex, main="pnl of going long the index", xlab="Market factor cumulative probability distribution", type="l")
pnltranches <- sweep(1+t(PVtranches$pv.w), 2, tranche.upf/100)
matplot(1-cumsum(w.mod), pnltranches, 2, tranche.upf/100, main="pnl of going long the tranches", xlab="Market factor cumulative probability distribution", type="l")
global.deltas <- rep(0,4)
for(i in 1:4){
    global.deltas[i] <- lm(pnltranches[,i]~0+pnlindex, weights=w.mod)$coef
}
pnlhedged.model <- pnltranches-pnlindex%*%t(global.deltas)
pnlhedged.market <- pnltranches-pnlindex%*%t(market.deltas)
## generate a bunch of plots
postscript("hedged tranches global.eps")
matplot(1-cumsum(w.mod), pnlhedged.model, type="l", ylab="pnl of the hedged package (global deltas)", xlab="Market factor cumulative probability distribution")
legend(0.35, y=0.75, c("0-15","15-25","25-35","35-100"), col=1:4, lty=1:4)
dev.off()
postscript("hedged tranches market.eps")
matplot(1-cumsum(w.mod), pnlhedged.market, type="l", ylab="Pnl", main="pnl of the hedged package (market deltas)", xlab="Market factor cumulative probability distribution")
legend(0.15, y=1.15, c("0-15","15-25","25-35","35-100"), col=1:4, lty=1:4)
dev.off()
postscript("0-15 hedged.eps")
matplot(1-cumsum(w.mod), cbind(pnlhedged.model[,1], pnlhedged.market[,1]), type="l", ylab="Pnl", main="Pnl of the hedged package (market vs global deltas)\n 0-15 tranche", xlab="Market factor cumulative probability distribution")
dev.off()
postscript("15-25 hedged.eps")
matplot(1-cumsum(w.mod), cbind(pnlhedged.model[,2], pnlhedged.market[,2]), type="l", ylab="Pnl", main="Pnl of the hedged package (market vs global deltas)\n 15-25 tranche", xlab="Market factor cumulative probability distribution")
dev.off()
postscript("25-35 hedged.eps")
matplot(1-cumsum(w.mod), cbind(pnlhedged.model[,3], pnlhedged.market[,3]), type="l", ylab="Pnl", main="Pnl of the hedged package (market vs global deltas)\n 25-35 tranche", xlab="Market factor cumulative probability distribution")
dev.off()
postscript("35-100 hedged.eps")
matplot(1-cumsum(w.mod), cbind(pnlhedged.model[,4], pnlhedged.market[,4]), type="l", ylab="Pnl", main="Pnl of the hedged package (market vs global deltas)\n 35-100 tranche", xlab="Market factor cumulative probability distribution")
dev.off()

## scenario based pricing
## generate the scenarios by finding the quantiles of the loss and recovery distributions
n.scenarios <- 100
percentiles <- (seq(0, 1, length=n.scenarios+1)[-1]+
                seq(0, 1, length=n.scenarios+1)[-(n.scenarios+1)])/2
l <- matrix(0, ncol(defaultprob), n.scenarios)
r <- matrix(0, ncol(defaultprob), n.scenarios)

MFdist <- MFlossdistrib(w.mod, rho, defaultprob, p, issuerweights, Ngrid)
MFdist.orig <- MFlossdistrib(w, rho, defaultprob, defaultprob, issuerweights, Ngrid)
lossdist.orig <- BClossdistC(SurvProb, issuerweights, recov, rho, 101, 500)
for(i in 1:17){
    Lfun <- splinefun(c(0, cumsum(MFdist$L[,i])),c(0, seq(0, 1, length=Ngrid)), "monoH.FC")
    Rfun <- splinefun(c(0, cumsum(MFdist$R[,i])),c(0, seq(0, 1, length=Ngrid)), "monoH.FC")
    for(j in 1:99){
        l[i, j] <- Lfun(d1[j])
        r[i, j] <- Rfun(d1[j])
    }
}

## joint generation of scenarios for loss and recovery distribution
clusterExport(cl, list("lossrecovdist.joint.term", "lossdistribC.joint"))
MFdist2 <- MFlossdistrib2(cl, w.mod, rho, defaultprob, p, issuerweights, Ngrid)
## memory never gets released by the clusters for some reasons, needs to call gc twice
clusterCall(cl, gc)
clusterCall(cl, gc)
gc()
#L+R<=1
test <- apply(MFdist2[21,,], 2, rev)
test.tri <- lower.tri(test)
sum(test[test.tri])#close to 1

## D=L+R
dist <- MFdist2[21,,]
supportD <- outer(seq(0,1, length=Ngrid), seq(0,1, length=Ngrid), "+")
## compute the joint density of (L/D, D)
## u=x/(x+y)
## v=x+y
x <- seq(0,1, length=Ngrid) %o% seq(0,1, length=Ngrid)
y <- sweep(-x, 2, seq(0, 1, length=Ngrid), "+")
xgrid <- round(x/0.005)
ygrid <- round(y/0.005)
distchv <- matrix(0, Ngrid, Ngrid)
for(i in 1:Ngrid){
    for(j in 1:Ngrid){
        distchv[i,j] <- dist[xgrid[i,j]+1, ygrid[i,j]+1]*seq(0,1, length=Ngrid)[j]
    }
}

## compute reinvesting distribution
beta <- 1.1
f <- function(l, r)(1-l-r)/(1-r)^beta
test <- outer(seq(0, 1, length=Ngrid), seq(0, 1, length=Ngrid), f)
plot(density(x=test[-Ngrid*Ngrid], weights=dist[-Ngrid*Ngrid], from=0, to=5))

## two dimensional scenarios
n.scenarios <- 100
percentiles <- (seq(0, 1, length=n.scenarios+1)[-1]+
                seq(0, 1, length=n.scenarios+1)[-(n.scenarios+1)])/2
l <- matrix(0, ncol(defaultprob), n.scenarios)
r <- matrix(0, ncol(defaultprob), n.scenarios)

MFdist <- MFlossdistrib(w.mod, rho, defaultprob, p, issuerweights, Ngrid)
i <- 21
Lfun <- splinefun(c(0, cumsum(MFdist$L[,i])),c(0, seq(0, 1, length=Ngrid)), "monoH.FC")

Rfun <- splinefun(c(0, cumsum(MFdist$R[,i])),c(0, seq(0, 1, length=Ngrid)), "monoH.FC")
    for(j in 1:99){
        l[i, j] <- Lfun(d1[j])
        r[i, j] <- Rfun(d1[j])
    }
}