1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
if(.Platform$OS.type == "unix"){
root.dir <- "/home/share/CorpCDOs"
}else{
root.dir <- "//WDSENTINEL/share/CorpCDOs"
}
options(stringsAsFactors = FALSE)
source(file.path(root.dir, "code", "R", "yieldcurve.R"))
source(file.path(root.dir, "code", "R", "optimization.R"))
source(file.path(root.dir, "code", "R", "calibration.R"), chdir=TRUE)
source(file.path(root.dir, "code", "R", "mlpdb.R"))
library(lossdistrib)
n.int <- 250
list2env(GHquad(n.int), envir=parent.frame())
Ngrid <- 201
aux <- function(rho, index, K, quote, spread){
temp <- BCtranche.legs(index, K, rho)
return(abs(temp$pl+temp$cl*spread + quote))
}
args <- commandArgs(trailingOnly=TRUE)
index.name <- args[1]
if(length(args)>=2&&args[2]!="update"){
tenor <- args[2]
}else{
tenor <- "5yr"
}
updateflag <- args[length(args)]=="update"
if(updateflag){##ghetto way of getting the last row of the file
runfile <- read.csv(file.path(root.dir,"Tranche_data","Runs", paste(index.name,tenor,"csv",sep=".")))
begin.date <- as.Date(runfile[nrow(runfile),1])+1
}else{
begin.date <- switch(index.name,
hy10=as.Date("2014-06-10"),
hy15=as.Date("2014-06-10"),
hy17=as.Date("2014-06-10"),
hy19=as.Date("2013-02-01"),
hy21=as.Date("2013-10-04"),
ig19=as.Date("2013-05-01"),
ig21=as.Date("2013-09-26"),
)
}
alldates <- seq(begin.date, Sys.Date()-1, by="1 day")
if(index.name=="ig19"){
alldates <- alldates[alldates!=as.Date("2013-11-29")] ##people are lazy the day after Thanksgiving
}
bus.dates <- as.Date(names(which(isBusinessDay(calendar="UnitedStates/GovernmentBond", alldates))))
##check if we have all the quotes and save them
n.tranches <- 4
quotes <- matrix(0, length(bus.dates), 2+2*n.tranches)
for(j in seq_along(bus.dates)){
tradedate <- bus.dates[j]
index <- load.index(index.name, tradedate, tenor, Z, w, Ngrid)
temp <- get.tranchequotes(index$name, index$tenor, tradedate)
quotes[j, 1] <- temp$indexrefprice[1]
quotes[j, 2] <- temp$indexrefspread[1]
quotes[j, 2+1:n.tranches] <- temp$trancheupfront
quotes[j, 2+n.tranches+1:n.tranches] <- temp$tranchedelta
}
tranche.names <- paste(temp$attach, temp$detach, sep="-")
colnames(quotes) <- c("indexprice", "indexref",paste(tranche.names, "Upfront"),
paste(tranche.names, "Dealer Delta"))
Attach <- temp$detach
#preallocate all the risk matrices
indexEL <- rep(0, length(bus.dates))
indexTheta <- rep(0, length(bus.dates))
deltas <- matrix(0, length(bus.dates), n.tranches)
gammas <- matrix(0, length(bus.dates), n.tranches)
thetas <- matrix(0, length(bus.dates), n.tranches)
rhos <- matrix(0, length(bus.dates), n.tranches)
corr01 <- matrix(0, length(bus.dates), n.tranches)
durations <- matrix(0, length(bus.dates), n.tranches)
EL <- matrix(0, length(bus.dates), n.tranches)
for(i in seq_along(bus.dates)){
tradedate <- bus.dates[i]
exportYC(tradedate)
index <- load.index(index.name, tradedate, tenor, Z, w, Ngrid)
## calibrate the single names curves
index <- set.singlenamesdata(index, tradedate)
index <- set.tranchedata(index, tradedate)
indexEL[i] <- EL(index)
indexTheta[i] <- indextheta(index, tradedate)
## calibrate the tranches using base correlation
rhovec <- c(0)
for(j in 1:(length(index$K)-2)){
##use the current tranche coupon
## we compute the 0-index$K[j+1] equivalent quote using the coupon of the jth quote
if(j==1){
q <- index$tranche.quotes[j]*index$K[j+1]
}else{
temp <- BCtranche.legs(index, index$K[j], rhovec[j])
q <- index$tranche.quotes[j] * (index$K[j+1]-index$K[j])-
temp$pl - temp$cl*index$tranche.running[j]
}
rho <- optimize(aux, interval=c(0,1), index=index, K=index$K[j+1], quote=q,
spread=index$tranche.running[j])$minimum
rhovec <- c(rhovec, rho)
}
index$rho <- c(rhovec, NA)
temp <- BCtranche.delta(index, tradedate)
deltas[i,] <- temp$deltas
gammas[i,] <- temp$gammas
thetas[i,] <- BCtranche.theta(index)$theta
rhos[i,] <- index$rho[-1]
corr01[i,] <- BCtranche.corr01(index)
temp <- BCtranche.pv(index, protection=TRUE)
durations[i,] <- (temp$cl-cdsAccrued(tradedate, index$tranche.running))/index$tranche.running
EL[i,] <- -temp$pl*diff(index$K)
print(tradedate)
}
risk.numbers <- data.frame(deltas, gammas, thetas, rhos, corr01, durations, EL)
colnames(risk.numbers) <- c(paste(tranche.names, "Model Delta"),
paste(tranche.names, "Gamma"),
paste(tranche.names, "Theta"),
paste(Attach, "Corr"),
paste(tranche.names, "Corr01"),
paste(tranche.names, "Dur"),
paste(tranche.names, "EL"))
data <- cbind(bus.dates, quotes, indexEL, indexTheta, risk.numbers)
colnames(data)[1] <- "date"
write.table(data, file=file.path(root.dir,"Tranche_data","Runs", paste(index.name,tenor,"csv",sep=".")),
append=updateflag, col.names=!updateflag, qmethod="double", sep=",", row.names=FALSE)
|