aboutsummaryrefslogtreecommitdiffstats
path: root/R/calibration.R
blob: 11f98c240a0a0ff8e411d70333da2999f7b8485c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
source("cds_functions_generic.R")

buildSC <- function(quote, cs, cdsdates){
    SC <- new("creditcurve",
              recovery=quote$recovery,
              startdate=tradedate,
              issuer=quote$ticker)
    quotes <- data.frame(maturity=cdsdates, upfront = quote$upfront,
                         running=quote$running)
    SC@curve <- cdshazardrate(quotes, SC@recovery, tradedate, cs)
    return( SC )
}

get.cdsSchedule <- function(tradedate, tenors=c(1:5, 7, 10)) {
    cdsdates <- as.Date(character(0))
    for(tenor in paste0(tenors, "y")){
        newdate <- cdsMaturity(tenor, date=tradedate)
        cdsdates <- c(cdsdates, newdate)
    }
    return( list(cs=couponSchedule(IMMDate(tradedate, noadj=TRUE), cdsdates[length(cdsdates)],
                                   "Q", "FIXED", 1, 0, tradedate, IMMDate(tradedate, "prev")),
                 cdsdates=cdsdates) )
}

set.singlenamesdata <- function(index, tradedate, recov=NULL) {
    cds.cs <- if (index$type %in% c("HY", "XO")) { # no need to build the full 10y curve
                  get.cdsSchedule(tradedate, 1:5)
              } else {
                  get.cdsSchedule(tradedate)
              }
    quotes <- get.singlenamesquotes(index$name, tradedate)
    tenor <- names(cds.cs$cdsdates)
    index$portfolio <- list()
    for(i in seq_along(quotes$tickers)){
        if(quotes$ticker[i] %in% c("IACI", "TITANC", "ESPSAN", "CBRY")){
            quotes$spread_curve[i,] <- rep(0.001, 8)
            quotes$upfront_curve[i,] <- rep(0, 8)
            quotes$recovery[i,] <- rep(0.4, 8)
        }
        quotes$upfront_curve[i, tenor] <- pmax(-yearFrac(tradedate+2, cds.cs$cdsdates)*
                                               quotes$spread_curve[i, tenor] * 1e-2,
                                               quotes$upfront_curve[i, tenor])
        quote <- list(ticker = quotes$ticker[i],
                      running = quotes$spread_curve[i, tenor] * 1e-4,
                      upfront = quotes$upfront_curve[i, tenor] * 0.01,
                      recovery = if(is.null(recov)) as.double(quotes$recovery[i,tenor][1])
                      else recov)
        if(all(is.na(quote$upfront))){
            loginfo(paste("no quotes available for", quote$ticker, "on day",
                          as.character(tradedate)))
            ## probably defaulted
            if(!is.na(quote$recovery)) {
                quote$upfront = (1-quote$recovery) * 0.9
            } else {
                index$portfolio <- NULL
                return( index )
            }
        }
        index$portfolio <- c(index$portfolio, buildSC(quote, cds.cs$cs, cds.cs$cdsdates))
    }
    index$issuerweights <- rep(1/length(index$portfolio), length(index$portfolio))
    ## group common curves
    index$issuerweights <- aggregate(index$issuerweights,
                                     by = list(unlist(lapply(index$portfolio, function(x)x@issuer))),
                                     sum)[,2]
    index$portfolio <- unique(index$portfolio)
    index$recov <- sapply(index$portfolio, attr, "recovery")
    return( index )
}

set.tranchedata <- function(index, tradedate){
    if(is.null(index)){
        stop("index is NULL")
    }
    temp <- get.tranchequotes(index$name, index$tenor, tradedate)
    if(nrow(temp) == 0) {
        stop(paste(index$name, "no quote for day", as.character(tradedate)))
    }
    index$quotes <- data.frame(maturity=index$maturity,
                               refspread=temp$indexrefspread[1],
                               refprice=temp$indexrefprice[1])
    index$quotes$spread <- couponfromindex(index$name, index$tenor) * 1e-4
    index$cs <- couponSchedule(IMMDate(tradedate, noadj=TRUE), index$maturity, "Q", "FIXED", 1,
                               0, tradedate, IMMDate(tradedate, "prev"))
    if(!is.na(index$quotes$refprice) && index$quotes$refprice != 0) {
        index$quotes$price <- index$quotes$refprice/100
    } else {

        index$quotes$price <- snacpv(index$cs, index$quotes$refspread[1]*1e-4, index$quotes$spread,
                                     if (index$type %in% c("IG", "EU")) 0.4 else 0.3, tradedate)
    }
    if(length(indexpv(index, tradedate=tradedate)) == 1) {
        stop("why am I stopping?")
    }
    tweak <- tweakcurves(index, tradedate)
    index$portfolio <- NULL
    index <- c(index, tweak)
    index$defaultprob <- 1 - SPmatrix(index$portfolio, index$cs$dates)
    negprob <- which(index$defaultprob < 0, arr.ind=T)
    if(nrow(negprob) > 0) {
        stop(paste(index$portfolio[[negprob[1,1]]]@issuer, "has negative probability, check single names data"))
    }
    K <- c(0, temp$detach/100)
    index$K.orig <- K
    index$K <- adjust.attachments(K, index$loss, index$factor)

    ## convert snac prices to proper upfront
    if(index$type == "XO") {
        coupon <- 500
        temp$trancheupfrontmid[4] <- 100 * ( 1 - snacpv(index$cs, temp$trancherunningmid[4]*1e-4,
                                                        coupon*1e-4, 0.4, tradedate))
        temp$trancherunningmid[4] <- coupon
    }
    if(index$type =="EU") {
        if(index$series>=21){
            coupon <- 100
            temp$trancheupfrontmid[3] <- 100 * ( 1 - snacpv(index$cs, temp$trancherunningmid[3]*1e-4,
                                                            coupon*1e-4, 0, tradedate))
            temp$trancheupfrontmid[4] <- 100 * ( 1 - snacpv(index$cs, temp$trancherunningmid[4]*1e-4,
                                                            coupon*1e-4, 0.4, tradedate))
            temp$trancherunningmid[3:4] <- coupon
        }else if(index$series == 9) {
            for(i in 4:5){
                coupon <- 100
                temp$trancheupfrontmid[i] <- 100 * ( 1 - snacpv(index$cs, temp$trancherunningmid[i]*1e-4,
                                                            coupon*1e-4, 0, tradedate))
                temp$trancherunningmid[i] <- coupon
            }
            coupon <- 25
            temp$trancheupfrontmid[6] <- 100 * ( 1 - snacpv(index$cs, temp$trancherunningmid[6]*1e-4,
                                                            coupon*1e-4, 0.4, tradedate))
            temp$trancherunningmid[6] <- coupon
        }
    }
    ## compute dirty protection price
    accrued <- cdsAccrued(tradedate, temp$trancherunningmid*1e-4)
    if(index$type  == "HY"){
        dirtyquotes <- 1 - temp$trancheupfrontmid/100 - accrued
    }else{
        dirtyquotes <- temp$trancheupfrontmid/100 - accrued
    }
    index$tranches <- data.frame(id = temp$id,
                                 upfront=temp$trancheupfrontmid,
                                 running=temp$trancherunningmid * 1e-4,
                                 quotes=dirtyquotes,
                                 mkt.delta=temp$tranchedelta,
                                 row.names=paste(index$K.orig[-length(index$K.orig)]*100,
                                     index$K.orig[-1]*100, sep="-"))
    return( index )
}

build.skew <- function(index, type="bottomup"){
    require(lossdistrib)
    aux <- function(rho, index, K, quote, spread, complement){
        temp <- BCtranche.legs(index, K, rho, complement)
        return(abs(temp$pl+temp$cl*spread + quote))
    }
    rhovec <- rep(NA, length(index$K))
    dK <- diff(index$K)
    if(type=="bottomup"){
        for(j in 1:(length(dK)-1)){
            ##use the current tranche coupon
            ## we compute the 0-index$K[j+1] equivalent quote using the coupon of the jth quote
            tranchepv <- BCtranche.legs(index, index$K[j], rhovec[j])
            q <- index$tranches$quotes[j] * dK[j] -
                tranchepv$pl - tranchepv$cl*index$tranches$running[j]
            rho <- optimize(aux, interval=c(0,1), index=index, K=index$K[j+1], quote=q,
                            spread=index$tranches$running[j], complement=FALSE)$minimum
            rhovec[j+1] <- rho
        }
    }else if(type=="topdown"){
        for(j in length(dK):2){
            tranchepv <- BCtranche.legs(index, index$K[j+1], rhovec[j+1], complement=TRUE)
            q <- index$tranche.quotes[j] * dK[j] -
                tranchepv$pl - tranchepv$cl * index$tranches$running[j]
            rho <- optimize(aux, interval=c(0,1), index=index, K=index$K[j], quote=q,
                            spread=index$tranches$running[j], complement=TRUE)$minimum
            rhovec[j] <- rho
        }
    }
    return( rhovec )
}

build.MFdist <- function(index, type="bottomup", tol=1e-2){
    index$w.mod <- index$w
    p <- index$defaultprob
    n.credit <- length(index$issuerweights)
    rho <- rep(0.45, n.credit)
    result <- matrix(0, 4, n.int)
    n.tranches <- length(index$K)-1
    err <- Inf
    if(type=="bottomup"){
        select <- 1:(n.tranches-1)
    }else if(type=="topdown"){
        select <- 2:n.tranches
    }
    while(err > tol){
        Rstoch <- MFrecovery(index, p)
        L <- array(0, dim=c(index$N, n.int, ncol(index$defaultprob)))
        R <- array(0, dim=c(index$N, n.int, ncol(index$defaultprob)))
        for(t in 1:ncol(index$defaultprob)){
            S <- 1 - Rstoch[,,t]
            L[,,t] <- lossdistCZ(p[,t], index$issuerweights, S, index$N, 0, rho, index$Z)
            R[,,t] <- lossdistCZ(p[,t], index$issuerweights, 1-S, index$N, 0, rho, index$Z)
        }
        for(i in 1:n.int){
            dist <- list(L=L[,i,], R=R[,i,])
            result[,i] <- MFtranche.pv(index, dist, protection=TRUE)$bp
        }
        ## solve the optimization problem
        program <- KLfit(result[select,], index$w, index$tranches$quotes[select])

        err <- 0
        for(i in 1:n.credit){
            for(j in 1:ncol(p)){
                err <- err + abs(crossprod(shockprob(p[i,j], rho[i],
                                                     index$Z), program$weight) - index$defaultprob[i,j])
            }
        }

        ## update the new probabilities
        p <- MFupdate.prob(index$Z, program$weight, rho, index$defaultprob)

        index$w.mod <- program$weight
        cat("=")
    }
    cat("\n")
    return(index$w.mod)
}