aboutsummaryrefslogtreecommitdiffstats
path: root/R/intex_deal_functions.R
blob: 270fc07d55fb46c0e5dd78c88df13c27adbdb995 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
library(RQuantLib)
library(data.table)
library(doParallel)
library(lossdistrib)

hostname <- system("hostname", intern=TRUE)
if(hostname=="debian"){
    registerDoParallel(8)
}else{
    registerDoParallel(4)
}

source("cds_functions_generic.R")
source("db.R")
etdb <- dbConn("ET")

getdealdata <- function(dealname, workdate){
    sqlstring <- paste0("select marketvalue from et_deal_model_numbers where dealname=$1 and ",
                        "updatedate in (select max(updatedate) from et_deal_model_numbers where ",
                        "dealname = $2 and updatedate<=$3)")
    mv <- dbGetQuery(etdb, sqlstring,
                     params = list(dealname, dealname, workdate))$marketvalue

    sqlstring <- paste0("select \"Curr Collat Bal\", reinv_end_date, ",
                        "first_pay_date , maturity, \"Principal Bal\" , pay_day from ",
                        "historical_clo_universe($1, $2)")
    dealdata <- dbGetQuery(etdb, sqlstring, params=list(dealname, workdate))
    if(!length(mv)){
        dealdata$mv <- NA
    }else{
        dealdata$mv <- mv
    }
    return(dealdata)
}

getcollateral <- function(dealname, date){
    if(missing(date)){
        collatdata <- dbGetQuery(etdb, "select * from et_aggdealinfo($1)",
                                 params=list(dealname))
    }else{
        collatdata <-  dbGetQuery(etdb,
                                  "select * from et_aggdealinfo_historical($1, $2)",
                                  params=list(dealname, date))
    }
    return(collatdata)
}

listdealnames <- function(){
    sqlstring <- "select distinct dealname from clo_universe order by dealname"
    return( dbGetQuery(etdb, sqlstring))
}

cusip.data <- function(workdate = Sys.Date()){
    sqlstring <- "SELECT DISTINCT ON (cusip) cusip, maturity, coupon AS grosscoupon,
spread, CASE WHEN floater_index like 'LIBOR%' THEN 'FLOAT' ELSE 'FIXED' END
AS fixedorfloat, orig_moody FROM cusip_universe JOIN deal_indicative USING (dealname)
WHERE updatedate<=$1 ORDER BY cusip, updatedate DESC"
    data <- dbGetQuery(etdb, sqlstring, workdate)
    data <- data.table(data)
    setkey(data, "cusip")
    return( data )
}

recovery <- function(collateral) {
    ## return assumed recovery based on assumptions from recovery.assumptions
    if(!is.na(collateral$secondlien) && collateral$secondlien){
        collateral$assettype <- "SecondLien"
    }
    recovery <- with(global.params,
                     as.numeric(recovery.assumptions[collateral$assettype]))
    if( !is.na(collateral$covlite) && collateral$covlite) {
        recovery <- recovery - global.params$recovery.assumptions$Adj_Covlite
    }
    if( !is.na(collateral$iscdo) && collateral$iscdo ){
        recovery <- 0
    }
    ## price is too low need to lower the assumed recovery
    if(!is.na(collateral$price) && recovery > collateral$price/100 - 0.1){
        recovery <- max(collateral$price/100-0.2, 0)
    }
    return(recovery)
}

dealnamefromcusip <- function(cusips){
    ## wrapper around the sql function
    sqlstr <- sprintf("select * from dealname_from_cusip('%s')",
                      paste(cusips, collapse="','"))
    r <- dbGetQuery(etdb, sqlstr)
    return( r$p_dealname )
}

cusipsfromdealnames <- function(dealnames){
    sqlstring <-
        sprintf("select unnest(\"Deal Cusip List\") from deal_indicative where dealname in ('%s')",
                paste(dealnames, collapse="','"))
    return( dbGetQuery(etdb, sqlstring)$unnest )
}

fithazardrate.fast <- function(collateral, eps=1e-6){
    lambda <- 0.05
    cs <- couponSchedule(collateral$nextpaydate, collateral$maturity,
                         collateral$frequency, collateral$fixedorfloat,
                         collateral$grosscoupon * 0.01, collateral$spread*0.01)
    R <- recovery(collateral)
    while(abs(bondprice(lambda, cs, R) * 100 - collateral$price) > eps){
        lambda <- lambda - (bondprice(lambda, cs, R) - 0.01*collateral$price)/dbondprice(lambda, cs, R)
    }
    return( lambda )
}

vanillabondprice <- function(h, collateral, prepay=TRUE) {
    R <- recovery(collateral)
    cs <- couponSchedule(collateral$nextpaydate, collateral$maturity,
                         collateral$frequency, collateral$fixedorfloat,
                         collateral$grosscoupon*0.01, collateral$spread*0.01)
    if(prepay){
        dpc <- new("defaultprepaycurve", dates=cs$dates, hazardrates=rep(h,length(cs$dates)),
                   prepayrates=rep(k(h), length(cs$dates)))
    }else{
        dpc <- new("defaultprepaycurve", dates=cs$dates, hazardrates=rep(h,length(cs$dates)),
                   prepayrates=numeric(0))
    }
    return( bondprice(cs, dpc, R) )
}

dvanillabondprice <- function(hazardrate, collateral) {
    R <- recovery(collateral)
    cs <- couponSchedule(collateral$nextpaydate, collateral$maturity,
                         collateral$frequency, collateral$fixedorfloat,
                         collateral$grosscoupon*0.01, collateral$spread*0.01)
    return( bondprice(hazardrate, cs, R) )
}

fithazardrate <- function(collateral){
    R <- recovery(collateral)
    cs <- couponSchedule(collateral$nextpaydate, collateral$maturity,
                         collateral$frequency, collateral$fixedorfloat,
                         collateral$grosscoupon*0.01, collateral$spread*0.01)
    f <- function(lambda){
        u <- bondprice(lambda, cs, R )
        return( (u * 100-collateral$price)^2 )
    }
    return( optimize(f, c(0,1), tol=1e-6)$minimum )
}

stackcurve <- function(SC, line.item, global.params, startdate){
    if(line.item$nextpaydate> line.item$maturity){
        SC@curve@hazardrates <- 0
        SC@curve@prepayrates <- 0
        SC@curve@dates <- line.item$maturity
        return( SC )
    }
    newdates <- seq(line.item$nextpaydate, line.item$maturity, by="3 months")
    if(newdates[length(newdates)]<line.item$maturity){
        newdates <- c(newdates, line.item$maturity)
    }
    newdates <- c(startdate, newdates[newdates>startdate])
    if(is.na(line.item$assettype) || line.item$assettype=="Loan"){
        hvec <- global.params$shape(yearFrac(today(), newdates[-1])) * global.params$defaultloanhazardrate
        kvec <- global.params$alpha * exp(-global.params$beta * hvec)
    }else if(line.item$assettype=="Bond" || line.item$assettype=="Credit Default Swap"
             || (!is.na(line.item$iscdo) && line.item$iscdo)){
        hvec <- global.params$shape(yearFrac(today(), newdates[-1])) * global.params$defaultbondhazardrate
        kvec <- rep(0, length(hvec))
    }
    SC@curve@hazardrates <- c(SC@curve@hazardrates, hvec)
    SC@curve@prepayrates <- c(SC@curve@prepayrates, kvec)
    SC@curve@dates <- c(SC@curve@dates, newdates[-1])
    return(SC)
}

buildSC.matured <- function(SC, line.item, reinvdate, dealmaturity, global.params, startdate){
    if(!is.na(reinvdate) && startdate<=reinvdate){ #reinvest
        line.item$maturity <- min(dealmaturity, startdate + global.params$rollingmaturity)
        SC <- stackcurve(SC, line.item, global.params, startdate)
    }else{ #no reinvestment
        SC@curve@dates <- startdate
        SC@curve@hazardrates <- 0
        SC@curve@prepayrates <- 0
    }
    return( SC )
}

buildSC <- function(line.item, reinvdate, dealmaturity, global.params, startdate){
    if(!is.na(line.item$iscdo) && line.item$iscdo && is.na(line.item$price)){
        ##we have prices for some cdos e.g. 210795PS3
        if(is.na(line.item$orig) || line.item$orig_moody == "NA" || length(line.item$orig_moody)==0){
            line.item$orig_moody <- "NR"
        }
        line.item$price <- as.numeric(global.params$cdoprices[gsub("\\d", "", line.item$orig_moody)])
    }
    ##build survival curve
    SC <- new("creditcurve", recovery=recovery(line.item), startdate=startdate,
              issuer=line.item$issuername)
    SC@curve <- new("defaultprepaycurve", dates=as.Date(character(0)))
    ## defaulted asset
    if(!is.na(line.item$defaultedflag) && line.item$defaultedflag){
        if(is.na(line.item$price)){
             line.item$currentbalance <- line.item$currentbalance * recovery(line.item)
        }else{
            line.item$currentbalance <- line.item$currentbalance * line.item$price/100
        }
        line.item$price <- 100
        SC@recovery <- 0.7
        SC@startdate <- startdate + global.params$defaultedlag
        if(global.params$reinvflag){#we reinvest recovery assets
            line.item$maturity <- min(dealmaturity, SC@startdate + global.params$rollingmaturity)
            line.item$nextpaydate <- SC@startdate
            ## automatic reinvest
            SC<- stackcurve(SC, line.item, global.params, SC@startdate)
        }else{
            SC <- NULL
        }

    }else if(line.item$maturity <= startdate){#matured asset
        SC <- buildSC.matured(SC, line.item, reinvdate, dealmaturity, global.params, startdate)
        if(is.na(line.item$price))line.item$price <- 100
    }else if(is.na(line.item$price)){ #missing price
        SC <- stackcurve(SC, line.item, global.params, SC@startdate)
        cs <- couponSchedule(line.item$nextpaydate, line.item$maturity,
                             line.item$frequency, line.item$fixedorfloat,
                             line.item$grosscoupon*0.01, line.item$spread*0.01, startdate)
        line.item$price <- bondpv(cs, SC@curve, recovery(line.item), startdate) * 100
    }else{ #normal case
        if(!is.na(line.item$assettype) && line.item$assettype=="Bond"){ #no prepay rate
            alpha <- 0
        }else{
            alpha <- global.params$alpha
        }
        try <- bondhazardrate.shaped(line.item, global.params$shape,
                                     recovery(line.item), alpha, global.params$beta, startdate)
        if(is.null(try)){
            SC <- stackcurve(SC, line.item, global.params, SC@startdate)
        }else{
            SC@curve <- try
        }
    }
    if(!is.na(reinvdate) && !is.null(SC) && creditcurve.maturity(SC) <= reinvdate){
        ## if reinvdate is missing, assume no reinvestment
        ## otherwise reinvest
        newstartdate <- line.item$maturity
        line.item$maturity <- min(dealmaturity, newstartdate + global.params$rollingmaturity)
        SC <- stackcurve(SC, line.item, global.params, newstartdate)
    }
    if(is.na(line.item$price)){
        ## TODO
    }
    beta <- if(!is.na(line.item$iscdo) && line.item$iscdo) 1 else global.params$defaultcorr
    return( list(SC=SC, notional=line.item$currentbalance, price = line.item$price, beta = beta) )
}

buildSC.portfolio <- function(dealname, dealdata, cusipdata, global.params, startdate = Sys.Date()) {
    collatdata <- data.table(getcollateral(dealname, startdate))
    setkey(collatdata, "cusip")
    ## replace the cdo fields by bloomberg data
    collatdata[cusipdata,
               `:=`(maturity=i.maturity, fixedorfloat=i.fixedorfloat,
                    spread=i.spread, grosscoupon=i.grosscoupon, orig_moody=i.orig_moody, iscdo=TRUE),
               allow.cartesian=TRUE]

    portfolio <- foreach(line.item = iter(collatdata, by='row')) %:% {
        when( !is.na(line.item$maturity) && line.item$currentbalance > 1
             && !is.na(line.item$assettype) && line.item$assettype!="Equity") } %dopar% {
                 buildSC(line.item, dealdata$reinv_end_date, dealdata$maturity, global.params, startdate)
             }
    ## non-parallel version for debugging
    ## portfolio <- c()
    ## for(i in 1:nrow(collatdata)){
    ##     line.item <- collatdata[i,]
    ##     if(is.na(line.item$maturity) || line.item$currentbalance <= 1){
    ##         next
    ##     }
    ##     portfolio <- c(portfolio, buildSC(line.item, dealdata$reinv_end_date, dealdata$maturity, global.params, startdate))
    ## }
    missingpricenotional <- sum(collatdata[is.na(price) & maturity>startdate &
                                           (is.na(iscdo)|!iscdo), currentbalance])
    cdonotional <- sum(collatdata[!is.na(iscdo)&(iscdo==TRUE),currentbalance])
    collatbalance <- sum(collatdata[,currentbalance])
    return( list(notional=vapply(portfolio, function(x)x$notional, numeric(1)),
                 beta = vapply(portfolio, function(x)x$beta, numeric(1)),
                 price = vapply(portfolio, function(x)x$price, numeric(1)),
                 SC = lapply(portfolio, function(x)x$SC),
                 stale = missingpricenotional/collatbalance,
                 cdopercentage = cdonotional/collatbalance,
                 collatbalance = collatbalance
                 ) )
}

cdrfromscenarios <- function(scenarios, dates, tradedate){
    ## compute the forward cdr rates to pass to intex
    ## so that we match the default curves in scenarios
    cdr <- matrix(0, nrow(scenarios), ncol(scenarios))
    for(i in 1:nrow(scenarios)){
        cdr[i,] <- 100*(1-exp(diff(c(0, log(1-scenarios[i,])))))/diff(c(0, yearFrac(tradedate, dates)))
    }
    return( cdr )
}

recoveryfromscenarios <- function(scenariosd, scenariosr){
    ## compute the forward recovery rate based on the term
    ## structure of recovery scenarios
    ## we run into trouble for very stressed scenarios
    ## this code should cap the scenarios at 0 if this happens
    intexrecov <- matrix(0, n.scenarios, ncol(scenariosr))
    scenariosr <- scenariosr
    for(i in 1:n.scenarios){
        current <- 1
        intexrecov[i,1] <- scenariosr[i,1]
        for(t in 2:ncol(scenariosr)){
            w <- scenariosd[i,current]/scenariosd[i,t]
            ## if(scenariosr[i,t]-w*scenariosr[i,current]>=0){
            ##     intexrecov[i,t] <- (scenariosr[i,t]-w*scenariosr[i,current])/(1-w)
            ##     current <- current+1
            ## }else{
            ##     intexrecov[i,t] <- 0
            ## }
            intexrecov[i,t] <- (scenariosr[i,t]-w*scenariosr[i,current])/(1-w)
            current <- current + 1
        }
    }
    return(intexrecov)
}

recoveryfromscenarios.fast <- function(scenariosr, scenariosd){
    r <- rbind(scenariosr[,1]/scenariosd[,1],
               apply(scenariosr, 1, diff)/apply(scenariosd, 1, diff))
    return( t(r) )
}

severityfromscenarios <- function(scenariosd, scenariosr){
    ## compute the forward recovery rate based on the term
    ## structure of recovery scenarios
    ## we run into trouble for very stressed scenarios
    ## this code should cap the scenarios at 0 if this happens
    intexseverity <- matrix(0, n.scenarios, ncol(scenariosr))
    for(i in 1:n.scenarios){
        current <- 1
        intexseverity[i,1] <- 1-scenariosr[i,1]
        for(t in 2:ncol(scenariosr)){
            w <- scenariosd[i,current]/scenariosd[i,t]
            intexseverity[i,t] <- 1 - (scenariosr[i,t]-w*scenariosr[i,current])/(1-w)
            current <- current+1
        }
    }
    return(intexseverity)
}

get.reinvassets <- function(dealname, tradedate){
  r <- list()
  sqlstr <- "select * from et_historicaldealinfo($1, $2) where ReinvFlag Is true"
  data <- dbGetQuery(etdb, sqlstr, params=list(dealname, tradedate))
  if(nrow(data)>0){
      for(i in 1:nrow(data)){
          r[[data$issuername[i]]] <- list(coupontype=data$fixedorfloat[i], liborfloor=data$liborfloor[i])
      }
  }
  return( r )
}

getpayday <- function(dealdata, tradedate){
    ## try to compute the previous pay date of a deal
    ## it relies on thwo things to be accurate: the pay_day
    ## as well as the first_pay_date (that's how we get the month)
    m <- as.numeric(format(dealdata$first_pay_date, "%m"))
    m <- m %%3+9
    y <- as.numeric(format(tradedate, "%Y"))
    y <- y - 1
    payday <- as.Date(sprintf("%s-%s-%s", y, m, dealdata$pay_day))
    i <- 1
    cal <- Calendar$new("UnitedStates")
    nextdate <- cal$advance(dates=payday, period = "3m", bdc = "Unadjusted")
    while(nextdate < tradedate){
        payday <- nextdate
        i <- i+1
        nextdate <- cal$advance(payday, 3*i, 2, bdc = "Unadjusted")
    }
    return(payday)
}

getdealschedule <- function(dealdata, freq = c("Monthly", "Quarterly"), tradedate=Sys.Date(),
                            bdc = c("Unadjusted", "Following", "ModifiedFollowing")) {
    payday <- getpayday(dealdata, tradedate)
    freq <- match.arg(freq)
    bdc <- match.arg(bdc)
    params <- list(effectiveDate = getpayday(dealdata, tradedate),
                   maturityDate = dealdata$maturity,
                   period = freq,
                   businessDayConvention = bdc,
                   terminationDateConvention = "Unadjusted",
                   dateGeneration = "Forward")
    return( Schedule(params) )
}

intexportfolio.forwardprice <- function(cdrmonthly, recoverymonthly, startdate, maturity,
                                   coupontype, margin, liborfloor){
    if(missing(liborfloor)||is.na(liborfloor)){
        currentcoupon <- margin
    }else{
        currentcoupon <- margin + liborfloor
    }
    forwardcs <- data.table(couponSchedule(nextpaydate=startdate+45, maturity,
                                           frequency="Q", coupontype, margin,
                                           currentcoupon, tradedate=startdate), key="dates")
    notionals <-  cdrmonthly[date>=startdate, lapply(.SD,function(x)cumprod(1-x/100*1/12)),
                             .SDcols=paste0("V",1:100)]
    recovery <- as.matrix(recoverymonthly[date>=startdate, .SD, .SDcols=paste0("V",1:100)])*
        -apply(rbind(1,as.matrix(notionals)), 2, diff)
    if(nrow(recovery)==1){
        recovery <- recovery*last(forwardcs[,df])
    }else{
        recovery <- data.table(dates=cdrmonthly[date>=startdate,date],apply(recovery, 2, cumsum),key="dates")
        recovery <- recovery[forwardcs, roll=TRUE]
        df <- recovery[,df]
        recovery <- t(df)%*%as.matrix(recovery[,lapply(.SD,function(x)diff(c(0,x))),.SDcols=paste0("V",1:100)])
    }
    notionals <- data.table(dates=cdrmonthly[date>=startdate,date], notionals, key="dates")
    outstanding <- notionals[forwardcs, roll=TRUE]
    mat.outstanding <- as.matrix(outstanding[,.SD,.SDcols=paste0("V",1:100)])
    po <- mat.outstanding[nrow(mat.outstanding),]*last(outstanding)[,df]
    io <- outstanding[, df*coupons]%*%mat.outstanding
    mean(recovery+po+io)
}

compute.reinvprices <- function(dealname, cdrmonthly, recoverymonthly, params, rollingmaturity, tradedate){
    reinvassets <- get.reinvassets(dealname, tradedate)
    reinvprices <- list()
    if(length(reinvassets)>0){
        maturity <- cdrmonthly$date[nrow(cdrmonthly)]
        for(assetname in names(reinvassets)){
            asset <- reinvassets[[assetname]]
            coupon <- if(asset$coupontype=="FLOAT") params$reinvfloat else params$reinvfixed
            reinvprices[[assetname]] <- foreach(date = iter(cdrmonthly$date), .combine=c) %dopar% {
                100 * intexportfolio.forwardprice(cdrmonthly.dt, recoverymonthly.dt, date,
                                                  min(date+rollingmaturity, maturity),
                                                  asset$coupontype, coupon, asset$liborfloor/100)
            }
        }
    }
    return(reinvprices)
}