aboutsummaryrefslogtreecommitdiffstats
path: root/R/intex_deal_functions.R
blob: 640b7cd0555ee3a6406aefb31048d564b8dc572f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
library(RQuantLib)
library(statmod)
library(hash)
root.dir <- "//WDSENTINEL/share/CorpCDOs/"
source(file.path(root.dir, "code", "R", "yieldCurve.R"))
source(file.path(root.dir, "code", "R", "cds_functions_generic.R"))
source(file.path(root.dir, "code", "R", "etdb.R"))
source(file.path(root.dir, "code", "R", "tranche_functions.R"))

getdealdata <- function(dealnames){
    sqlstring <- sprintf("select * from latest_clo_universe where dealname in ('%s')",
                         paste(dealnames, collapse="','"))
    return( dbGetQuery(dbCon, sqlstring) )
}

getcollateral <- function(dealname, date=Sys.Date()){
    sqlstring <- sprintf("select * from et_aggdealinfo_historical('%s', '%s')", dealname, date)
    collatdata <- dbGetQuery(dbCon, sqlstring)
    return(collatdata)
}

listdealnames <- function(){
    sqlstring <- "select distinct dealname from clo_universe order by dealname"
    return( dbGetQuery(dbCon, sqlstring))
}

cusip.data <- function(){
    sqlstring <- "SELECT a.cusip, b.maturity, a.coupon AS grosscoupon, a.spread,
CASE WHEN a.floater_index like 'LIBOR%' THEN 'FLOAT' ELSE 'FIXED' END
AS fixedorfloat, a.orig_moody from cusip_universe a LEFT JOIN latest_clo_universe b ON a.dealname = b.dealname"
    data <- dbGetQuery(dbCon, sqlstring)
    return( data )
}

recovery <- function(collateral) {
    ## return assumed recovery based on assumptions from recovery.assumptions
    if(!is.na(collateral$secondlien) && collateral$secondlien){
        collateral$assettype <- "SecondLien"
    }
    recovery <- with(global.params,
                     as.numeric(recovery.assumptions[collateral$assettype]))
    if( !is.na(collateral$covlite) && collateral$covlite) {
        recovery <- recovery - global.params$recovery.assumptions$Adj_Covlite
    }
    if( !is.na(collateral$iscdo) && collateral$iscdo ){
        recovery <- 0
    }
    ## price is too low need to lower the assumed recovery
    if(!is.na(collateral$price) && recovery > collateral$price/100 - 0.1){
        recovery <- max(collateral$price/100-0.2, 0)
    }
    return(recovery)
}

dealnamefromcusip <- function(cusips){
    ## wrapper around the sql procedure, not the fastest probably
    r <- NULL
    for(i in 1:length(cusips)){
        sqlstr <- sprintf("select * from dealname_from_cusip('%s')", cusips[i])
        r <- c(r, as.character(dbGetQuery(dbCon, sqlstr)))
    }
    return( r )
}

cusipsfromdealnames <- function(dealnames){
    sqlstring <-
        sprintf("select unnest(\"Deal Cusip List\") from clo_universe where dealname in ('%s')",
                paste(dealnames, collapse="','"))
    return( dbGetQuery(dbCon, sqlstring)$unnest )
}

fithazardrate.fast <- function(collateral, eps=1e-6){
    lambda <- 0.05
    cs <- couponSchedule(collateral$nextpaydate, collateral$maturity,
                         collateral$frequency, collateral$fixedorfloat,
                         collateral$grosscoupon * 0.01, collateral$spread*0.01)
    R <- recovery(collateral)
    while(abs(bondprice(lambda, cs, R) * 100 - collateral$price) > eps){
        lambda <- lambda - (bondprice(lambda, cs, R) - 0.01*collateral$price)/dbondprice(lambda, cs, R)
    }
    return( lambda )
}

vanillabondprice <- function(h, collateral, prepay=TRUE) {
    R <- recovery(collateral)
    cs <- couponSchedule(collateral$nextpaydate, collateral$maturity,
                         collateral$frequency, collateral$fixedorfloat,
                         collateral$grosscoupon*0.01, collateral$spread*0.01)
    if(prepay){
        dpc <- new("defaultprepaycurve", dates=cs$dates, hazardrates=rep(h,length(cs$dates)),
                   prepayrates=rep(k(h), length(cs$dates)))
    }else{
        dpc <- new("defaultprepaycurve", dates=cs$dates, hazardrates=rep(h,length(cs$dates)),
                   prepayrates=numeric(0))
    }
    return( bondprice(cs, dpc, R) )
}
f
dvanillabondprice <- function(hazardrate, collateral) {
    R <- recovery(collateral)
    cs <- couponSchedule(collateral$nextpaydate, collateral$maturity,
                         collateral$frequency, collateral$fixedorfloat,
                         collateral$grosscoupon*0.01, collateral$spread*0.01)
    return( bondprice(hazardrate, cs, R) )
}

fithazardrate <- function(collateral){
    R <- recovery(collateral)
    cs <- couponSchedule(collateral$nextpaydate, collateral$maturity,
                         collateral$frequency, collateral$fixedorfloat,
                         collateral$grosscoupon*0.01, collateral$spread*0.01)
    f <- function(lambda){
        u <- bondprice(lambda, cs, R )
        return( (u * 100-collateral$price)^2 )
    }
    return( optimize(f, c(0,1), tol=1e-6)$minimum )
}


maturity <- function(creditcurve){
    if(class(creditcurve)=="creditcurve"){
        dates <- creditcurve@curve@dates
        if(length(dates)){
            return( dates[length(dates)] )
        }else{
            return( creditcurve@startdate )
        }
    }else{
        stop("not of class creditcurve")
    }
}

stackcurve <- function(SC, line.item, global.params, startdate){
    if(line.item$nextpaydate> line.item$maturity){
        SC@curve@hazardrates <- 0
        SC@curve@prepayrates <- 0
        SC@curve@dates <- line.item$maturity
        return( SC )
    }
    newdates <- seq(line.item$nextpaydate, line.item$maturity, by="3 months")
    if(newdates[length(newdates)]<line.item$maturity){
        newdates <- c(newdates, line.item$maturity)
    }
    newdates <- c(startdate, newdates[newdates>startdate])
    if(is.na(line.item$assettype) || line.item$assettype=="Loan"){
        hvec <- global.params$shape(yearFrac(today(), newdates[-1])) * global.params$defaultloanhazardrate
        kvec <- global.params$alpha * exp(-global.params$beta * hvec)
    }else if(line.item$assettype=="Bond" || line.item$assettype=="Credit Default Swap"
             || (!is.na(line.item$iscdo) && line.item$iscdo)){
        hvec <- global.params$shape(yearFrac(today(), newdates[-1])) * global.params$defaultbondhazardrate
        kvec <- rep(0, length(hvec))
    }
    SC@curve@hazardrates <- c(SC@curve@hazardrates, hvec)
    SC@curve@prepayrates <- c(SC@curve@prepayrates, kvec)
    SC@curve@dates <- c(SC@curve@dates, newdates[-1])
    return(SC)
}

buildSC.matured <- function(SC, line.item, reinvdate, dealmaturity, global.params, startdate){
    if(!is.na(reinvdate) && startdate<=reinvdate){ #reinvest
        line.item$maturity <- min(dealmaturity, startdate + global.params$rollingmaturity)
        SC <- stackcurve(SC, line.item, global.params, startdate)
    }else{ #no reinvestment
        SC@curve@dates <- startdate
        SC@curve@hazardrates <- 0
        SC@curve@prepayrates <- 0
    }
    return( SC )
}

buildSC <- function(line.item, reinvdate, dealmaturity, global.params, startdate){
    ## cat(line.item$issuername, "\n")
    if(!is.na(line.item$iscdo) && line.item$iscdo && is.na(line.item$price)){
        ##we have prices for some cdos e.g. 210795PS3
        if(length(line.item$orig_moody)==0){
            line.item$orig_moody <- "NR"
        }
        line.item$price <- as.numeric(global.params$cdoprices[gsub("\\d", "", line.item$orig_moody)])
    }
    ##build survival curve
    SC <- new("creditcurve", recovery=recovery(line.item), startdate=startdate,
              issuer=line.item$issuername)
    SC@curve <- new("defaultprepaycurve", dates=as.Date(character(0)))
    ## defaulted asset
    if(!is.na(line.item$defaultedflag) && line.item$defaultedflag){
        if(is.na(line.item$price)){
             line.item$currentbalance <- line.item$currentbalance * recovery(line.item)
        }else{
            line.item$currentbalance <- line.item$currentbalance * line.item$price/100
        }
        line.item$price <- 100

        SC@startdate <- startdate + global.params$defaultedlag
        line.item$maturity <- min(dealmaturity, SC@startdate + global.params$rollingmaturity)
        line.item$nextpaydate <- SC@startdate
        ## automatic reinvest
        SC<- stackcurve(SC, line.item, global.params, SC@startdate)
    }else if(line.item$maturity <= startdate){#matured asset
        SC <- buildSC.matured(SC, line.item, reinvdate, dealmaturity, global.params, startdate)
        if(is.na(line.item$price))line.item$price <- 100
    }else if(is.na(line.item$price)){ #missing price
        SC <- stackcurve(SC, line.item, global.params, SC@startdate)
        cs <- couponSchedule(line.item$nextpaydate, line.item$maturity,
                             line.item$frequency, line.item$fixedorfloat,
                             line.item$grosscoupon*0.01, line.item$spread*0.01)
        line.item$price <- bondpv(cs, SC@curve, recovery(line.item)) * 100
    }else{ #normal case
        if(!is.na(line.item$assettype) && line.item$assettype=="Bond"){ #no prepay rate
            alpha <- 0
        }else{
            alpha <- global.params$alpha
        }
        try <- bondhazardrate.shaped(line.item, global.params$shape,
                                     recovery(line.item), alpha, global.params$beta)
        if(is.null(try)){
            SC <- stackcurve(SC, line.item, global.params, SC@startdate)
        }else{
            SC@curve <- try
        }
    }
    if(!is.na(reinvdate) && maturity(SC) <= reinvdate){
        ## if reinvdate is missing, assume no reinvestment
        ## otherwise reinvest
        newstartdate <- line.item$maturity
        line.item$maturity <- min(dealmaturity, newstartdate + global.params$rollingmaturity)
        SC <- stackcurve(SC, line.item, global.params, newstartdate)
    }
    if(is.na(line.item$price)){
        ## TODO
    }
    return( list(SC=SC, notional=line.item$currentbalance, price = line.item$price) )
}

buildSC.portfolio <- function(dealname, dealdata, cusipdata, global.params, startdate=today()) {
    collatdata <- getcollateral(dealname)
    index <- hash(cusipdata$cusip, 1:length(cusipdata$cusip))
    notionalvec <- c()
    SCvec <- c()
    betavec <- c()
    pricevec <- c()
    fields <- c("maturity", "fixedorfloat", "spread", "grosscoupon", "orig_moody")
    for(i in 1:nrow(collatdata)){
        line.item <- collatdata[i,]
        if( is.na(line.item$maturity) ){
            stop("empty maturity")
        }
        ##most likely equity, doesn't impact the risk anyway
        if(line.item$currentbalance < 1 || line.item$assettype=="Equity"){
            next
        }
        ## overwrite the data with cusipdata info if not NA,
        ## because it should be higher quality
        ## e.g all cdos in acacl061 had wrong maturity
        if(has.key(line.item$cusip, index)){
            line.item$iscdo <- TRUE
            for(field in fields){
                if(!is.na(cusipdata[index[[line.item$cusip]],field])){
                    line.item[field] <- cusipdata[index[[line.item$cusip]],field]
                }
            }
        }
        temp <- buildSC(line.item, dealdata$"Reinv End Date", dealdata$maturity, global.params, startdate)
        notionalvec <- c(notionalvec, temp$notional)
        SCvec <- c(SCvec, temp$SC)
        pricevec <- c(pricevec, temp$price)
        betavec <- c(betavec, if(!is.na(line.item$iscdo) && line.item$iscdo) 1 else
                     global.params$defaultcorr)
    }
    return( list(notional=notionalvec, SC=SCvec, beta=betavec, price = pricevec) )
}

cdrfromscenarios <- function(scenarios, dates){
    ## compute the forward cdr rates to pass to intex
    ## so that we match the default curves in scenarios
    cdr <- matrix(0, nrow(scenarios), ncol(scenarios))
    for(i in 1:nrow(scenarios)){
        cdr[i,] <- 100*(1-exp(diff(c(0, log(1-scenarios[i,])))))/diff(c(0, yearFrac(today(), dates)))
    }
    return( cdr )
}

recoveryfromscenarios <- function(scenariosd, scenariosr){
    ## compute the forward recovery rate based on the term
    ## structure of recovery scenarios
    ## we run into trouble for very stressed scenarios
    ## this code should cap the scenarios at 0 if this happens
    intexrecov <- matrix(0, n.scenarios, ncol(scenariosr))
    for(i in 1:n.scenarios){
        current <- 1
        intexrecov[i,1] <- scenariosr[i,1]
        for(t in 2:ncol(scenariosr)){
            w <- scenariosd[i,current]/scenariosd[i,t]
            ## if(scenariosr[i,t]-w*scenariosr[i,current]>=0){
            ##     intexrecov[i,t] <- (scenariosr[i,t]-w*scenariosr[i,current])/(1-w)
            ##     current <- current+1
            ## }else{
            ##     intexrecov[i,t] <- 0
            ## }
            intexrecov[i,t] <- (scenariosr[i,t]-w*scenariosr[i,current])/(1-w)
            current <- current + 1
        }
    }
    return(intexrecov)
}

severityfromscenarios <- function(scenariosd, scenariosr){
    ## compute the forward recovery rate based on the term
    ## structure of recovery scenarios
    ## we run into trouble for very stressed scenarios
    ## this code should cap the scenarios at 0 if this happens
    intexseverity <- matrix(0, n.scenarios, ncol(scenariosr))
    for(i in 1:n.scenarios){
        current <- 1
        intexseverity[i,1] <- 1-scenariosr[i,1]
        for(t in 2:ncol(scenariosr)){
            w <- scenariosd[i,current]/scenariosd[i,t]
            intexseverity[i,t] <- 1 - (scenariosr[i,t]-w*scenariosr[i,current])/(1-w)
            current <- current+1
        }
    }
    return(intexseverity)
}