1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
|
library(RPostgreSQL)
library(RQuantLib)
if(.Platform$OS.type == "unix"){
root.dir <- "/home/share/CorpCDOs"
}else{
root.dir <- "//WDSENTINEL/share/CorpCDOs"
}
source(file.path(root.dir, "code", "R", "etdb.R"))
source(file.path(root.dir, "code", "R", "yieldcurve.R"))
source(file.path(root.dir, "code", "R", "cds_utils.R"))
workdate <- as.Date("2013-01-30")
MarkitData <- getMarkitIRData(as.Date(workdate))
L1m <- buildMarkitYC(MarkitData, dt = 1/12)
L2m <- buildMarkitYC(MarkitData, dt = 1/6)
L3m <- buildMarkitYC(MarkitData)
L6m <- buildMarkitYC(MarkitData, dt = 1/2)
L12m <- buildMarkitYC(MarkitData, dt = 1)
setEvaluationDate(as.Date(MarkitData$effectiveasof))
sanitize.column <- function(vec){
vec <- gsub(",", "", vec)
index <- grep("\\(", vec)
for(l in index){
vec[l] <- -as.numeric(substr(vec[l], 2, nchar(vec[l])-1))
}
return( as.numeric(vec) )
}
fields <- c("Cashflow", "Principal", "Interest")
tranches <- c("COLLAT_REINVEST", "COLLAT_INITIAL")
n.scenarios <- 100
cfdata <- list()
dealnames <- list.files(file.path(root.dir, "Scenarios", paste0("Prices_", workdate)), "*COLLAT_INITIAL-CF-Scen1*")
dealnames <- sapply(strsplit(dealnames, "-"), function(x) x[1])
dealnames <- tolower(unique(dealnames))
flag <- FALSE
for(dealname in dealnames){
cfdata[[dealname]] <- list()
r <- matrix(0, n.scenarios, 3)
colnames(r) <- fields
sqlstring <- sprintf("select marketvalue from latest_deal_model_numbers where dealname='%s'", dealname)
mv <- dbGetQuery(dbCon, sqlstring)$marketvalue
sqlstring <- sprintf("select \"Curr Collat Bal\" from latest_clo_universe where dealname='%s'", dealname)
currbal <- dbGetQuery(dbCon, sqlstring)$"Curr Collat Bal"
cfdata[[dealname]]$mv <- mv
cfdata[[dealname]]$currbal <- currbal
for(tranche in tranches){
for(i in 1:n.scenarios){
filename <- paste0(paste(toupper(dealname), tranche, "CF", paste0("Scen", i), sep="-"), ".txt")
data <- read.table(file.path(root.dir, "Scenarios", paste0("Prices_", workdate), filename),
sep="\t", header=T, skip =3, colClasses="character", comment.char="")
colnames(data) <- c("Date", "Cashflow", "Principal", "Interest")
data <- data[,1:4]
colnames(data) <- c("Date", "Cashflow", "Principal", "Interest")
data$Date <- as.Date(data$Date, "%b %d, %Y")
if(any(is.na(data$Date))){
sprintf("file: %s is messed up", filename)
flag <- TRUE
break
}
data <- data[data$Date >= Sys.Date(),]
if(i==1){
DC <- DiscountCurve(L3m$params, L3m$tsQuotes, yearFrac(L3m$params$tradeDate, data$Date))
}
pv <- c()
for(field in fields){
data[,field] <- sanitize.column(data[,field])
pv <- c(pv, crossprod(DC$discounts[1:length(data$Date)], data[,field]))
}
r[i,] <- pv
}
if(flag){
cfdata[[dealname]] <- NULL
flag <- FALSE
break
}else{
cfdata[[dealname]][[tranche]]<- r
}
}
}
r <- c()
for(dealname in dealnames){
r <- rbind(r, c(cfdata[[dealname]]$mv, cfdata[[dealname]]$currbal, apply(cfdata[[dealname]]$COLLAT_REINVEST, 2, mean)[1], apply(cfdata[[dealname]]$COLLAT_INITIAL, 2, mean)[1]))
}
colnames(r) <- c("mv", "currbal", "Reinvest", "Initial")
rownames(r) <- dealnames
flag <- FALSE
cusipdata <- list()
for(cusip in cusips){
r <- matrix(0, n.scenarios, 3)
colnames(r) <- fields
sqlstring <- sprintf("select curr_balance, spread from cusip_universe where cusip = '%s'", cusip)
indicdata <- dbGetQuery(dbCon, sqlstring)
cusipdata[[cusip]]$currbal <- indicdata$curr_balance
cusipdata[[cusip]]$spread <- indicdata$spread
for(i in 1:n.scenarios){
filename <- sprintf("%s-CF-Scen%s.txt", cusip, i)
if(length(list.files(file.path(root.dir, "Scenarios", paste0("Prices_", workdate)), filename))==0){
next
}
data <- read.table(file.path(root.dir, "Scenarios", paste0("Prices_", workdate), filename),
sep = "\t", header=T, colClasses="character", skip = 3, comment.char="")
data <- data[, 1:4]
colnames(data) <- c("Date", "Cashflow", "Principal", "Interest")
data$Date <- as.Date(data$Date, "%b %d, %Y")
if(any(is.na(data$Date))){
sprintf("file: %s is messed up", filename)
flag <- TRUE
break
}
data <- data[data$Date >= Sys.Date(),]
if(i==1){
DC <- DiscountCurve(L3m$params, L3m$tsQuotes, yearFrac(L3m$params$tradeDate, data$Date))
}
pv <- c()
for(field in fields){
data[,field] <- sanitize.column(data[,field])
pv <- c(pv, crossprod(DC$discounts[1:length(data$Date), data[,field]))
}
r[i,] <- pv
}
if(flag){
cusipsdata[[cusip]] <- NULL
flag <- FALSE
break
}else{
for(field in fields){
cusipdata[[cusip]][[field]] <- r[,field]
}
}
}
prices <- c()
duration <- c()
for(cusip in names(cusipdata)){
prices <- c(prices, mean(cusipdata[[cusip]]$Cashflow)/cusipdata[[cusip]]$currbal)
duration <- c(duration, mean(cusipdata[[cusip]]$Interest)/
(cusipdata[[cusip]]$currbal*cusipdata[[cusip]]$spread))
}
i <- 1
for(cusip in names(cusipdata)){
cat(cusip, prices[i], "\n")
i <- i+1
}
|