1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
|
from index_data import get_index_quotes, get_singlenames_curves
from .db import _engine
from dateutil.relativedelta import relativedelta
from pyisda.credit_index import CreditIndex
from typing import List
import numpy as np
import pandas as pd
import datetime
from scipy.optimize import brentq
from pandas.tseries.offsets import BDay
class BasketIndex(CreditIndex):
index_type: str
series: int
recovery: float
step_in_date: pd.Timestamp
value_date: pd.Timestamp
tweaks: List[float]
def __init__(self, index_type: str, series: int, tenors: List[str], *,
trade_date: pd.Timestamp=pd.Timestamp.today().normalize() - BDay()):
self.index_type = index_type
self.series = series
if index_type == 'IG' or index_type == 'EU':
self.recovery = 0.4
else:
self.recovery = 0.3
self.index_desc = pd.read_sql_query("SELECT tenor, maturity, coupon * 1e-4 AS coupon, " \
"issue_date "\
"FROM index_maturity " \
"WHERE index=%s AND series=%s",
_engine,
index_col='tenor',
params=(index_type, series),
parse_dates=['maturity', 'issue_date'])
r = _engine.execute("SELECT lastdate, indexfactor/100 AS factor, cumulativeloss/100, version " \
"FROM index_version " \
"WHERE index = %s AND series = %s" \
"ORDER BY lastdate", (index_type, series))
self._version = tuple(tuple(t) for t in r)
self.issue_date = self.index_desc.issue_date[0]
maturities = self.index_desc.maturity.sort_values().dt.to_pydatetime()
self.index_desc = self.index_desc.reset_index().set_index('maturity')
curves, args = get_singlenames_curves(index_type, series, trade_date)
_, jp_yc, _, step_in_date, value_date, _ = args
self.yc = jp_yc
self.step_in_date = step_in_date
self.value_date = value_date
self._trade_date = trade_date
self.tweaks = []
super().__init__(self.issue_date, maturities, curves)
def _query_version(self, i):
for lastdate, *data in self._version:
if lastdate >= self.trade_date.date():
return data[i]
@property
def factor(self):
return self._query_version(0)
@property
def cumloss(self):
return self._query_version(1)
@property
def version(self):
return self._query_version(2)
def _get_quotes(self):
pass
@property
def trade_date(self):
return self._trade_date
@trade_date.setter
def trade_date(self, d: pd.Timestamp):
curves, args = get_singlenames_curves(self.index_type, self.series, d)
_, jp_yc, _, step_in_date, value_date, _ = args
self.yc = jp_yc
self.step_in_date = step_in_date
self.value_date = value_date
self._trade_date = d
self.curves = curves
def pv(self, maturity: pd.Timestamp, epsilon=0.):
return super().pv(self.step_in_date, self.value_date, maturity, self.yc,
self.recovery, self.coupon(maturity), epsilon)
def duration(self, maturity):
return super().duration(self.step_in_date, self.value_date, maturity, self.yc)
def theta(self, maturity):
if self.step_in_date.date() > maturity - relativedelta(years=1):
return np.NaN
else:
index_quote = self.index_quotes.loc[self.trade_date, maturity]
return super().theta(self.step_in_date, self.value_date, maturity,
self.yc, self.recovery, self.coupon(maturity), index_quote)
def coupon(self, maturity):
return self.index_desc.loc[maturity, 'coupon']
def tweak(self):
""" tweak the singlename curves to match index quotes"""
quotes = self._get_quotes()
self.tweaks = []
for m, index_quote in quotes.items():
lo, hi = -0.3, 0.3
while lo > -1:
try:
eps = brentq(lambda epsilon: self.pv(m, epsilon) -
index_quote, lo, hi)
except ValueError:
lo *= 1.1
hi *= 1.1
else:
break
else:
print("couldn't calibrate for date: {} and maturity: {}".
format(self.trade_date.date(), m.date()))
self.tweaks.append(np.NaN)
continue
self.tweaks.append(eps)
self.tweak_portfolio(eps, m)
class MarkitBasketIndex(BasketIndex):
def __init__(self, index_type: str, series: int, tenors: List[str], *,
trade_date: pd.Timestamp=pd.Timestamp.today().normalize() - BDay()):
super().__init__(index_type, series, tenors, trade_date=trade_date)
self.index_quotes = (get_index_quotes(index_type, series,
tenors, years=None)['closeprice'].
unstack().
groupby(level='date', as_index=False).nth(0).
reset_index(['index', 'series', 'version'], drop=True))
self.index_quotes.columns = (self.index_desc.reset_index().
set_index('tenor').
loc[self.index_quotes.columns, "maturity"])
self.index_quotes = 1 - self.index_quotes / 100
def _get_quotes(self):
return self.index_quotes.loc[self.trade_date]
if __name__ == "__main__":
ig28 = BasketIndex("IG", 28, ["3yr", "5yr", "7yr", "10yr"])
from quantlib.time.api import Schedule, Rule, Date, Period, WeekendsOnly
from quantlib.settings import Settings
settings = Settings()
cds_schedule = Schedule.from_rule(settings.evaluation_date, Date.from_datetime(ig28.maturities[-1]),
Period('3M'), WeekendsOnly(), date_generation_rule=Rule.CDS2015)
sp = ig28.survival_matrix(cds_schedule.to_npdates().view('int') + 134774)
|