aboutsummaryrefslogtreecommitdiffstats
path: root/python/analytics/basket_index.py
blob: 715a7122a8333ce107ffe587ccfc0ec3fe310e29 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from .index_data import get_index_quotes, get_singlenames_curves
from .db import _engine
from .utils import tenor_t
from dateutil.relativedelta import relativedelta
from functools import partial
from pyisda.credit_index import CreditIndex
from typing import List
from yieldcurve import get_curve
import numpy as np
import pandas as pd
from math import exp
import datetime
from scipy.optimize import brentq
from pandas.tseries.offsets import Day, BDay

def make_index(t, d, args):
    instance = t.__new__(t)
    CreditIndex.__init__(instance, *args)
    instance.__dict__.update(d)
    return instance

class BasketIndex(CreditIndex):
    index_type: str
    series: int
    recovery: float
    step_in_date: pd.Timestamp
    value_date: pd.Timestamp
    tweaks: List[float]

    def __init__(self, index_type: str, series: int, tenors: List[str], *,
                 trade_date: pd.Timestamp=pd.Timestamp.today().normalize() - BDay()):
        self.index_type = index_type
        self.series = series
        if index_type == 'IG' or index_type == 'EU':
            self.recovery = 0.4
        else:
            self.recovery = 0.3
        self.index_desc = pd.read_sql_query("SELECT tenor, maturity, coupon * 1e-4 AS coupon, " \
                                            "issue_date "\
                                            "FROM index_maturity " \
                                            "WHERE index=%s AND series=%s",
                                            _engine,
                                            index_col='tenor',
                                            params=(index_type, series),
                                            parse_dates=['maturity', 'issue_date'])
        r = _engine.execute("SELECT lastdate, indexfactor/100 AS factor, cumulativeloss/100, version " \
                            "FROM index_version " \
                            "WHERE index = %s AND series = %s" \
                            "ORDER BY lastdate", (index_type, series))
        self._version = tuple(tuple(t) for t in r)
        self.issue_date = self.index_desc.issue_date[0]
        maturities = self.index_desc.maturity[tenors].sort_values().dt.to_pydatetime()
        self.index_desc = self.index_desc.reset_index().set_index('maturity')
        self.index_desc.tenor = self.index_desc.tenor.astype(tenor_t)
        curves = get_singlenames_curves(index_type, series, trade_date)
        self.currency = "EUR" if index_type in ["XO", "EU"] else "USD"
        self.yc = get_curve(trade_date, self.currency)
        self.step_in_date = trade_date + Day()
        self.value_date = trade_date + 3 * BDay()
        self.tweaks = []
        super().__init__(self.issue_date, maturities, curves, trade_date=trade_date)

    def __reduce__(self):
        _, args = CreditIndex.__reduce__(self)
        d = vars(self)
        return partial(make_index, self.__class__), (d, args)

    def __hash__(self):
        def aux(v):
            if isinstance(v, pd.DataFrame):
                return hash_pandas_object(v)
            elif isinstance(v, list):
                return hash(tuple(v))
            else:
                return hash(v)
        hash(CreditIndex.__hash__(self),
             hash(frozenset([(k, aux(v)) for k, v in dirs(self)])))

    def _query_version(self, i):
        for lastdate, *data in self._version:
            if lastdate >= self.trade_date:
                return data[i]

    @property
    def factor(self):
        return self._query_version(0)

    @property
    def cumloss(self):
        return self._query_version(1)

    @property
    def version(self):
        return self._query_version(2)

    def _get_quotes(self):
        pass

    trade_date = property(CreditIndex.trade_date.__get__)

    @trade_date.setter
    def trade_date(self, d: pd.Timestamp):
        self.curves = get_singlenames_curves(self.index_type, self.series, d)
        self.yc = get_curve(d, self.currency)
        self.step_in_date = d + Day()
        self.value_date = d + 3 * BDay()
        CreditIndex.trade_date.__set__(self, d)

    def pv(self, maturity=None, epsilon=0., coupon=None):
        if maturity is None:
            r = []
            for m in self.maturities:
                coupon = self.index_desc.coupon[m]
                r.append(super().pv(self.step_in_date, self.value_date,
                                    m, self.yc, self.recovery,
                                    coupon,
                                    epsilon))
            return pd.Series(r, index=self.index_desc.tenor, name='pv')
        else:
            if coupon is None:
                try:
                    coupon = self.index_desc.coupon[maturity]
                except KeyError:
                    raise ValueError("Non standard maturity: coupon must be provided")
            return super().pv(self.step_in_date, self.value_date, maturity,
                              self.yc, self.recovery, coupon,
                              epsilon)


    def coupon_leg(self, maturity=None):
        return self.index_desc.coupon.values * self.duration()

    def protection_leg(self, maturity=None):
        return self.pv() + self.coupon_leg()

    def spread(self, maturity=None):
        return (self.index_desc.coupon.values + self.pv() / self.duration()) * 1e4

    def duration(self, maturity=None):
        if maturity is None:
            r = []
            for m in self.maturities:
                r.append(super().duration(self.step_in_date, self.value_date,
                                          m, self.yc))
            return pd.Series(r, index=self.index_desc.tenor, name='duration')
        else:
            return super().duration(self.step_in_date, self.value_date,
                                    maturity, self.yc)

    def theta(self, maturity=None, coupon=None):
        """ index thetas

        if maturity is None, returns a series of theta for all tenors.
        Otherwise compute the theta for that specific maturity (which need
        not be an existing tenor)"""
        if hasattr(self, "index_quotes"):
            index_quotes = self.index_quotes.loc[self.trade_date]
        else:
            index_quotes = None
        if maturity is None:
            r = []
            for m in self.maturities:
                coupon = self.index_desc.coupon[m]
                index_quote = np.nan if index_quotes is None else index_quotes[m]
                r.append(super().theta(self.step_in_date, self.value_date, m,
                                       self.yc, self.recovery, coupon,
                                       index_quote))
            return pd.Series(r, index=self.index_desc.tenor, name='theta')
        else:
            if coupon is None:
                try:
                    coupon = self.index_desc.coupon[maturity]
                except KeyError:
                    raise ValueError("Non standard maturity: coupon must be provided")
            return super().theta(self.step_in_date, self.value_date, maturity,
                                 self.yc, self.recovery, coupon,
                                 np.nan)

    def coupon(self):
        return self.index_desc.set_index('tenor').coupon

    def tweak(self, *args):
        """ tweak the singlename curves to match index quotes"""
        quotes = self._get_quotes(*args)
        self.tweaks = []
        for m, index_quote in quotes.items():
            lo, hi = -0.3, 0.3
            hi_tilde = exp(hi) -1
            while hi_tilde < 5:
                # map range to (-1, +inf)
                lo_tilde = exp(lo) -1
                hi_tilde = exp(hi) -1
                try:
                    eps = brentq(lambda epsilon: self.pv(m, epsilon) -
                                 index_quote, lo_tilde, hi_tilde)
                except ValueError:
                    lo *= 1.1
                    hi *= 1.1
                else:
                    break
            else:
                print("couldn't calibrate for date: {} and maturity: {}".
                      format(self.trade_date.date(), m.date()))
                self.tweaks.append(np.NaN)
                continue
            self.tweaks.append(eps)
            self.tweak_portfolio(eps, m)

class MarkitBasketIndex(BasketIndex):
    def __init__(self, index_type: str, series: int, tenors: List[str], *,
                 trade_date: pd.Timestamp=pd.Timestamp.today().normalize() - BDay()):
        super().__init__(index_type, series, tenors, trade_date=trade_date)
        self.index_quotes = (get_index_quotes(index_type, series,
                                              tenors, years=None)['closeprice'].
                             unstack().
                             groupby(level='date', as_index=False).nth(0).
                             reset_index(['index', 'series', 'version'], drop=True))
        self.index_quotes.columns = (self.index_desc.reset_index().
                                     set_index('tenor').
                                     loc[self.index_quotes.columns, "maturity"])
        self.index_quotes = 1 - self.index_quotes / 100

    def _get_quotes(self):
        return self.index_quotes.loc[self.trade_date]

if __name__ == "__main__":
    ig28 = BasketIndex("IG", 28, ["3yr", "5yr", "7yr", "10yr"])
    from quantlib.time.api import Schedule, Rule, Date, Period, WeekendsOnly
    from quantlib.settings import Settings
    settings = Settings()

    cds_schedule = Schedule.from_rule(settings.evaluation_date, Date.from_datetime(ig28.maturities[-1]),
                                      Period('3M'), WeekendsOnly(), date_generation_rule=Rule.CDS2015)
    sp = ig28.survival_matrix(cds_schedule.to_npdates().view('int') + 134774)