1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
import numpy as np
from scipy.stats import norm
def d1(F, K, sigma, T):
return (np.log(F / K) + sigma**2 * T / 2) / (sigma * np.sqrt(T))
def d2(F, K, sigma, T):
return d1(F, K, sigma, T) - sigma * np.sqrt(T)
def black(F, K, T, sigma, option_type = "payer"):
chi = 1 if option_type == "payer" else -1
if option_type == "payer":
return F * norm.cdf(d1(F, K, sigma, T)) - K * norm.cdf(d2(F, K, sigma, T))
else:
return K * norm.cdf(- d2(F, K, sigma, T)) - F * norm.cdf(- d1(F, K, sigma, T))
|