aboutsummaryrefslogtreecommitdiffstats
path: root/python/analytics/cms_spread.py
blob: fa61c7cf42ef779516a1f33054714c947aab63db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
from . import cms_spread_utils
from .cms_spread_utils import h_call, h_put
import datetime
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import re
from math import exp, sqrt, log, pi
from .black import bachelier
from quantlib.time.api import (
    Date,
    Period,
    Days,
    Months,
    Years,
    UnitedStates,
    Actual365Fixed,
    Following,
    ModifiedFollowing,
)
from quantlib.cashflows.cms_coupon import CmsCoupon
from quantlib.cashflows.conundrum_pricer import AnalyticHaganPricer, YieldCurveModel
from quantlib.termstructures.yields.api import YieldTermStructure
from quantlib.indexes.swap.usd_libor_swap import UsdLiborSwapIsdaFixAm
from quantlib.experimental.coupons.swap_spread_index import SwapSpreadIndex
from quantlib.experimental.coupons.lognormal_cmsspread_pricer import (
    LognormalCmsSpreadPricer,
)
from quantlib.experimental.coupons.cms_spread_coupon import CappedFlooredCmsSpreadCoupon
from quantlib.termstructures.volatility.api import (
    VolatilityType,
    SwaptionVolatilityMatrix,
)
from quantlib.cashflows.linear_tsr_pricer import LinearTsrPricer
from quantlib.quotes import SimpleQuote

from quantlib.math.matrix import Matrix
from scipy import LowLevelCallable
from scipy.integrate import quad
from scipy.interpolate import RectBivariateSpline
from scipy.special import roots_hermitenorm
from yieldcurve import YC
from utils.db import dawn_engine, serenitas_pool

__all__ = ["CmsSpread"]


_call_integrand = LowLevelCallable.from_cython(cms_spread_utils, "h1")


def get_fixings(conn, tenor1, tenor2, fixing_date=None):
    if fixing_date:
        sql_str = (
            f'SELECT "{tenor1}y" ,"{tenor2}y" FROM USD_swap_fixings '
            "WHERE fixing_date=%s"
        )
        with conn.cursor() as c:
            c.execute(sql_str, (fixing_date,))
            try:
                fixing1, fixing2 = next(c)
            except StopIteration:
                raise RuntimeError(f"no fixings available for date {fixing_date}")
    else:
        sql_str = (
            f'SELECT fixing_date, "{tenor1}y" ,"{tenor2}y" FROM USD_swap_fixings '
            "ORDER BY fixing_date DESC LIMIT 1"
        )
        with conn.cursor() as c:
            c.execute(sql_str, fixing_date)
            fixing_date, fixing1, fixing2 = next(c)

    date = Date.from_datetime(fixing_date)
    fixing1 = float(fixing1)
    fixing2 = float(fixing2)
    return date, fixing1, fixing2


def build_spread_index(tenor1, tenor2):
    yc = YieldTermStructure()
    USISDA1 = UsdLiborSwapIsdaFixAm(Period(tenor1, Years), yc)
    USISDA2 = UsdLiborSwapIsdaFixAm(Period(tenor2, Years), yc)
    spread_index = SwapSpreadIndex(f"{tenor1}-{tenor2}", USISDA1, USISDA2)
    return spread_index, yc


def get_swaption_vol_data(
    source="ICPL", vol_type=VolatilityType.ShiftedLognormal, date=None
):
    if vol_type == VolatilityType.Normal:
        table_name = "swaption_normal_vol"
    else:
        table_name = "swaption_lognormal_vol"
    sql_str = f"SELECT * FROM {table_name} WHERE source=%s "
    if date is None:
        sql_str += "ORDER BY date DESC LIMIT 1"
        params = (source,)
    else:
        sql_str += "AND date=%s"
        params = (source, date)
    conn = serenitas_pool.getconn()
    with conn.cursor() as c:
        c.execute(sql_str, params)
        surf_data = next(c)
    serenitas_pool.putconn(conn)
    return surf_data[0], np.array(surf_data[1:-1], order="F", dtype="float64").T


def get_swaption_vol_surface(date, vol_type):
    date, surf, _ = get_swaption_vol_data(date=date, vol_type=vol_type)
    tenors = [1 / 12, 0.25, 0.5, 0.75] + list(range(1, 11)) + [15.0, 20.0, 25.0, 30.0]
    return RectBivariateSpline(tenors, tenors[-14:], surf)


def get_swaption_vol_matrix(date, data, vol_type=VolatilityType.ShiftedLognormal):
    # figure out what to do with nan
    calendar = UnitedStates()
    data = np.delete(data, 3, axis=0) / 100
    m = Matrix.from_ndarray(data)
    option_tenors = (
        [Period(i, Months) for i in [1, 3, 6]]
        + [Period(i, Years) for i in range(1, 11)]
        + [Period(i, Years) for i in [15, 20, 25, 30]]
    )
    swap_tenors = option_tenors[-14:]
    return SwaptionVolatilityMatrix(
        calendar,
        Following,
        option_tenors,
        swap_tenors,
        m,
        Actual365Fixed(),
        vol_type=vol_type,
    )


def quantlib_model(
    date,
    spread_index,
    yc,
    cap,
    rho,
    maturity,
    mean_rev=0.0,
    vol_type=VolatilityType.ShiftedLognormal,
    notional=300_000_000,
):
    date, surf = get_swaption_vol_data(date=date, vol_type=vol_type)
    atm_vol = get_swaption_vol_matrix(date, surf, vol_type)
    pricer = LinearTsrPricer(atm_vol, SimpleQuote(mean_rev), yc)
    vol_type = VolatilityType(atm_vol.volatility_type)
    if isinstance(rho, float):
        rho = SimpleQuote(rho)
    cmsspread_pricer = LognormalCmsSpreadPricer(pricer, rho, yc)
    end_date = Date.from_datetime(maturity)
    pay_date = spread_index.fixing_calendar.advance(end_date, 0, Days)
    start_date = end_date - Period(1, Years)
    end_date = Date.from_datetime(maturity)
    # we build an in arrear floored coupon
    # see line 38 in ql/cashflows/capflooredcoupon.hpp
    #  The payoff $P$ of a floored floating-rate coupon is:
    # \[ P = N \times T \times \max(a L + b, F). \]
    # where $N$ is the notional, $T$ is the accrual time, $L$ is the floating rate,
    # $a$ is its gearing, $b$ is the spread, and $F$ the strike
    capped_floored_cms_spread_coupon = CappedFlooredCmsSpreadCoupon(
        pay_date,
        notional,
        start_date,
        end_date,
        spread_index.fixing_days,
        spread_index,
        1.0,
        -cap,
        floor=0.0,
        day_counter=Actual365Fixed(),
        is_in_arrears=True,
    )
    capped_floored_cms_spread_coupon.set_pricer(cmsspread_pricer)
    return capped_floored_cms_spread_coupon


def plot_surf(surf, tenors):
    xx, yy = np.meshgrid(tenors, tenors[-14:])
    fig = plt.figure()
    ax = fig.gca(projection="3d")
    ax.plot_surface(xx, yy, surf.ev(xx, yy))


def globeop_model(
    date, spread_index, yc, strike, rho, maturity, vol_type=VolatilityType.Normal
):
    """ price cap spread option without convexity adjustment

    vol_type Normal is the only supported one at the moment"""
    maturity = Date.from_datetime(maturity)
    fixing_date = spread_index.fixing_calendar.advance(maturity, units=Days)
    forward = spread_index.fixing(fixing_date)
    date, surf = get_swaption_vol_data(date=date, vol_type=vol_type)
    atm_vol = get_swaption_vol_matrix(date, surf, vol_type=vol_type)
    d = Date.from_datetime(date)
    T = Actual365Fixed().year_fraction(d, maturity)
    vol1 = atm_vol.volatility(maturity, spread_index.swap_index1.tenor, 0.0)
    vol2 = atm_vol.volatility(maturity, spread_index.swap_index2.tenor, 0.0)
    vol_spread = sqrt(vol1 ** 2 + vol2 ** 2 - 2 * rho * vol1 * vol2)
    # normal vol is not scale independent and is computed in percent terms, so
    # we scale everything by 100.
    return 0.01 * yc.discount(T) * bachelier(forward * 100, strike * 100, T, vol_spread)


def get_cms_coupons(trade_date, notional, option_tenor, spread_index, fixing_days=2):
    maturity = Date.from_datetime(trade_date) + option_tenor
    fixing_date = spread_index.fixing_calendar.adjust(maturity, ModifiedFollowing)
    payment_date = spread_index.fixing_calendar.advance(fixing_date, fixing_days, Days)
    accrued_end_date = payment_date
    accrued_start_date = accrued_end_date - Period(1, Years)
    cms_beta = CmsCoupon(
        payment_date,
        notional,
        start_date=accrued_start_date,
        end_date=accrued_end_date,
        fixing_days=fixing_days,
        index=spread_index.swap_index2,
        is_in_arrears=True,
    )

    cms_gamma = CmsCoupon(
        payment_date,
        notional,
        start_date=accrued_start_date,
        end_date=accrued_end_date,
        fixing_days=fixing_days,
        index=spread_index.swap_index1,
        is_in_arrears=True,
    )
    return cms_beta, cms_gamma


def get_params(cms_beta, cms_gamma, atm_vol):
    s_gamma = cms_gamma.index_fixing
    s_beta = cms_beta.index_fixing
    adjusted_gamma = cms_gamma.rate
    adjusted_beta = cms_beta.rate
    T_alpha = atm_vol.time_from_reference(cms_beta.fixing_date)
    mu_beta = 1 / T_alpha * log(adjusted_beta / s_beta)
    mu_gamma = 1 / T_alpha * log(adjusted_gamma / s_gamma)
    vol_gamma = atm_vol.volatility(
        cms_gamma.fixing_date, cms_gamma.swap_index.tenor, s_gamma
    )
    vol_beta = atm_vol.volatility(
        cms_beta.fixing_date, cms_beta.swap_index.tenor, s_beta
    )
    mu_x = (mu_gamma - 0.5 * vol_gamma ** 2) * T_alpha
    mu_y = (mu_beta - 0.5 * vol_beta ** 2) * T_alpha
    sigma_x = vol_gamma * sqrt(T_alpha)
    sigma_y = vol_beta * sqrt(T_alpha)
    return (s_gamma, s_beta, mu_x, mu_y, sigma_x, sigma_y)


class CmsSpread:
    def __init__(
        self,
        maturity,
        tenor1,
        tenor2,
        strike,
        option_tenor=None,
        value_date=datetime.date.today(),
        notional=100_000_000,
        conditional1=None,
        conditional2=None,
        fixing_days=2,
        corr=0.8,
        mean_reversion=0.1,
    ):
        """ tenor1 < tenor2"""
        self._value_date = value_date
        if maturity is None:
            maturity = Date.from_datetime(value_date) + option_tenor
        else:
            maturity = Date.from_datetime(maturity)
        spread_index, self.yc = build_spread_index(tenor2, tenor1)
        self.yc.link_to(YC(evaluation_date=value_date, extrapolation=True))
        cal = spread_index.fixing_calendar
        fixing_date = cal.adjust(maturity, ModifiedFollowing)
        payment_date = cal.advance(fixing_date, 2, Days)
        accrued_end_date = payment_date
        accrued_start_date = accrued_end_date - Period(1, Years)
        self.strike = strike
        self.notional = notional
        self.fixing_days = 2
        self.cms1 = CmsCoupon(
            payment_date,
            self.notional,
            start_date=accrued_start_date,
            end_date=accrued_end_date,
            fixing_days=fixing_days,
            index=spread_index.swap_index2,
            is_in_arrears=True,
        )

        self.cms2 = CmsCoupon(
            payment_date,
            notional,
            start_date=accrued_start_date,
            end_date=accrued_end_date,
            fixing_days=fixing_days,
            index=spread_index.swap_index1,
            is_in_arrears=True,
        )
        date, surf = get_swaption_vol_data(
            date=value_date, vol_type=VolatilityType.ShiftedLognormal
        )
        atm_vol = get_swaption_vol_matrix(value_date, surf)
        self._corr = SimpleQuote(corr)
        self. = SimpleQuote(mean_reversion)
        self._cms_pricer = AnalyticHaganPricer(
            atm_vol, YieldCurveModel.Standard, self.
        )
        self.cms1.set_pricer(self._cms_pricer)
        self.cms2.set_pricer(self._cms_pricer)
        self._params = get_params(self.cms1, self.cms2, atm_vol)
        self._x, self._w = roots_hermitenorm(20)
        self.conditional1 = conditional1
        self.conditional2 = conditional2

    @staticmethod
    def from_tradeid(trade_id):
        rec = dawn_engine.execute(
            "SELECT "
            "amount, expiration_date, floating_rate_index, strike, trade_date "
            "FROM capfloors WHERE id = %s",
            (trade_id,),
        )
        r = rec.fetchone()
        m = re.match(r"USD(\d{1,2})-(\d{1,2})CMS", r.floating_rate_index)
        if m:
            tenor2, tenor1 = map(int, m.groups())
        if trade_id == 3:
            instance = CmsSpread(
                r.expiration_date,
                tenor1,
                tenor2,
                r.strike * 0.01,
                value_date=r.trade_date,
                notional=r.amount,
                conditional1=0.025,
            )
        else:
            instance = CmsSpread(
                r.expiration_date,
                tenor1,
                tenor2,
                r.strike * 0.01,
                value_date=r.trade_date,
                notional=r.amount,
            )
        return instance

    @property
    def corr(self):
        return self._corr.value

    @corr.setter
    def corr(self, val):
        self._corr.value = val

    @property
    def value_date(self):
        return self._value_date

    @value_date.setter
    def value_date(self, d: pd.Timestamp):
        self._value_date = d
        self.yc.link_to(YC(evaluation_date=d, extrapolation=True))
        date, surf = get_swaption_vol_data(
            date=d, vol_type=VolatilityType.ShiftedLognormal
        )
        atm_vol = get_swaption_vol_matrix(d, surf)
        self._cms_pricer.swaption_volatility = atm_vol
        self._params = get_params(self.cms1, self.cms2, atm_vol)

    @property
    def pv(self):
        args = (self.strike, *self._params, self.corr)
        norm_const = 1 / sqrt(2 * pi)
        if self.conditional1 is not None:
            bound = (
                log(self.conditional1 / self._params[1]) - self._params[3]
            ) / self._params[-1]
            val, _ = quad(_call_integrand, -np.inf, bound, args=args)
            return (
                self.notional
                * norm_const
                * val
                * self.yc.discount(self.cms1.fixing_date)
            )
        else:
            return (
                self.notional
                * norm_const
                * np.dot(self._w, h_call(self._x, *args))
                * self.yc.discount(self.cms1.fixing_date)
            )