1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
import numpy as np
import matplotlib.pyplot as plt
from .tranche_functions import GHquad
from math import exp, sqrt, log
from .black import bachelier
from quantlib.time.api import (
Date, Period, Days, Months, Years, UnitedStates, Actual365Fixed, Following)
from quantlib.termstructures.yields.api import YieldTermStructure
from quantlib.indexes.swap.usd_libor_swap import UsdLiborSwapIsdaFixAm
from quantlib.experimental.coupons.swap_spread_index import SwapSpreadIndex
from quantlib.experimental.coupons.lognormal_cmsspread_pricer import \
LognormalCmsSpreadPricer
from quantlib.experimental.coupons.cms_spread_coupon import \
CappedFlooredCmsSpreadCoupon
from quantlib.termstructures.volatility.api import (
VolatilityType, SwaptionVolatilityMatrix)
from quantlib.cashflows.linear_tsr_pricer import LinearTsrPricer
from quantlib.quotes import SimpleQuote
from quantlib.math.matrix import Matrix
from scipy.interpolate import RectBivariateSpline
from db import dbconn
def CMS_spread(T_alpha, X, beta, gamma):
Z, w = GHquad(100)
return np.inner(f(Z), w)
def h(v, X, S_alpha_beta, mu_beta, sigma_alpha_beta, T_alpha):
r = (mu_beta - 0.5 * sigma_alpha_beta * sigma_alpha_beta) * T_alpha + \
sigma_alpha_beta * sqrt(T_alpha) * v
return X + S_alpha_beta * exp(r)
def f(v, X, S_alpha_beta, S_alpha_gamma, mu_beta, mu_gamma, T_alpha, rho):
h = h(v, X, S_alpha_beta, mu_beta, sigma_alpha_beta, T_alpha)
u = rho * sigma_alpha_gamma * sqrt(T_alpha) * v
d = sigma_alpha_gamma * sqrt(T_alpha) * sqrt(1 - rho ** 2)
r = mu_gamma * T_alpha - 0.5 * rho * rho * sigma_alpha_gamma ** 2 * T_alpha + u
u0 = log(S_alpha_gamma / h) + u
u1 = u0 + (mu_gamma + (0.5 - rho ** 2) * sigma_alpha_gamma**2) * T_alpha
u2 = u0 + (mu_gamma - 0.5 * sigma_alpha_gamma**2) * T_alpha
return 0.5 * (S_alpha_gamma * exp(r) * cnd_erf(u1 / d) - h * cnd_erf(u2 / d))
def get_fixings(conn, tenor1, tenor2, fixing_date=None):
if fixing_date:
sql_str = f'SELECT "{tenor1}y" ,"{tenor2}y" FROM USD_swap_fixings ' \
'WHERE fixing_date=%s'
with conn.cursor() as c:
c.execute(sql_str, (fixing_date,))
try:
fixing1, fixing2 = next(c)
except StopIteration:
raise RuntimeError(f"no fixings available for date {fixing_date}")
else:
sql_str = f'SELECT fixing_date, "{tenor1}y" ,"{tenor2}y" FROM USD_swap_fixings ' \
'ORDER BY fixing_date DESC LIMIT 1'
with conn.cursor() as c:
c.execute(sql_str, fixing_date)
fixing_date, fixing1, fixing2 = next(c)
date = Date.from_datetime(fixing_date)
fixing1 = float(fixing1)
fixing2 = float(fixing2)
return date, fixing1, fixing2
def build_spread_index(tenor1, tenor2):
yc = YieldTermStructure()
USISDA1 = UsdLiborSwapIsdaFixAm(Period(tenor1, Years), yc)
USISDA2 = UsdLiborSwapIsdaFixAm(Period(tenor2, Years), yc)
spread_index = SwapSpreadIndex(f"{tenor1}-{tenor2}", USISDA1, USISDA2)
return spread_index, yc
def get_swaption_vol_data(source="ICPL", vol_type=VolatilityType.ShiftedLognormal,
date=None):
if vol_type == VolatilityType.Normal:
table_name = "swaption_normal_vol"
else:
table_name = "swaption_lognormal_vol"
sql_str = f"SELECT * FROM {table_name} WHERE source=%s "
if date is None:
sql_str += "ORDER BY date DESC LIMIT 1"
params = (source,)
else:
sql_str += "AND date=%s"
params = (source, date)
conn = dbconn('serenitasdb')
with conn.cursor() as c:
c.execute(sql_str, params)
surf_data = next(c)
return surf_data[0], np.array(surf_data[1:-1], order='F').T
def get_swaption_vol_surface(date, vol_type):
date, surf, _ = get_swaption_vol_data(date=date, vol_type=vol_type)
tenors = [1/12, 0.25, 0.5, 0.75] + list(range(1, 11)) + [15., 20., 25., 30.]
return RectBivariateSpline(tenors, tenors[-14:], surf)
def get_swaption_vol_matrix(date, data, vol_type=VolatilityType.ShiftedLognormal):
# figure out what to do with nan
calendar = UnitedStates()
data = np.delete(data, 3, axis=0) / 100
m = Matrix.from_ndarray(data)
option_tenors = [Period(i, Months) for i in [1, 3, 6]] + \
[Period(i, Years) for i in range(1, 11)] + \
[Period(i, Years) for i in [15, 20, 25, 30]]
swap_tenors = option_tenors[-14:]
return (SwaptionVolatilityMatrix.
from_reference_date(Date.from_datetime(date),
calendar,
Following,
option_tenors,
swap_tenors,
m,
Actual365Fixed(),
vol_type=vol_type))
def quantlib_model(date, spread_index, yc, cap, rho, maturity, mean_rev=0.,
vol_type=VolatilityType.ShiftedLognormal):
date, surf = get_swaption_vol_data(date=date, vol_type=vol_type)
atm_vol = get_swaption_vol_matrix(date, surf, vol_type)
pricer = LinearTsrPricer(atm_vol, SimpleQuote(mean_rev), yc)
vol_type = VolatilityType(atm_vol.volatility_type)
cmsspread_pricer = LognormalCmsSpreadPricer(pricer,
SimpleQuote(rho),
yc)
end_date = Date.from_datetime(maturity)
pay_date = spread_index.fixing_calendar.advance(end_date, 0, Days)
start_date = end_date - Period(1, Years)
end_date = Date(19, 1, 2020)
cms_spread_coupon = CappedFlooredCmsSpreadCoupon(
pay_date, 300_000_000, start_date, end_date,
spread_index.fixing_days, spread_index, 1., -cap,
floor=0.,
day_counter=Actual365Fixed(),
is_in_arrears=True)
cms_spread_coupon.set_pricer(cmsspread_pricer)
return cms_spread_coupon
def plot_surf(surf, tenors):
xx, yy = np.meshgrid(tenors, tenors[-14:])
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_surface(xx, yy, surf.ev(xx, yy))
def globeop_model(date, spread_index, yc, strike, rho, maturity,
vol_type=VolatilityType.Normal):
""" price cap spread option without convexity adjustment
vol_type Normal is the only supported one at the moment"""
maturity = Date.from_datetime(maturity)
fixing_date = spread_index.fixing_calendar.advance(maturity, units=Days)
forward = spread_index.fixing(fixing_date)
date, surf = get_swaption_vol_data(date=date, vol_type=vol_type)
atm_vol = get_swaption_vol_matrix(date, surf, vol_type=vol_type)
d = Date.from_datetime(date)
T = Actual365Fixed().year_fraction(d, maturity)
vol1 = atm_vol.volatility(maturity, spread_index.swap_index1.tenor, 0.)
vol2 = atm_vol.volatility(maturity, spread_index.swap_index2.tenor, 0.)
vol_spread = sqrt(vol1**2 + vol2**2 - 2 * rho * vol1 * vol2)
# normal vol is not scale independent and is computed in percent terms, so we scale
# everything by 100.
return 0.01 * yc.discount(T) * bachelier(forward * 100, strike * 100, T, vol_spread)
|