aboutsummaryrefslogtreecommitdiffstats
path: root/python/analytics/cms_spread.py
blob: ee26373a13996675660706634a113ea6a8def320 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from .tranche_functions import GHquad
from math import exp, sqrt, log
from .black import cnd_erf
from bbg_helpers import BBG_IP, retrieve_data, init_bbg_session

def CMS_spread(T_alpha, X, beta, gamma):
    Z, w = GHquad(100)
    return np.inner(f(Z), w)

def f(v, X, S_alpha_beta, S_alpha_gamma, mu_beta, mu_gamma, T_alpha, rho):
    h = h(v, X, S_alpha_beta, mu_beta, sigma_alpha_beta, T_alpha)
    u = rho * sigma_alpha_gamma * sqrt(T_alpha) * v
    d = sigma_alpha_gamma * sqrt(T_alpha) * sqrt(1 - rho ** 2)
    r = mu_gamma * T_alpha - 0.5 * rho * rho * sigma_alpha_gamma ** 2 * T_alpha + u
    u0 = log(S_alpha_gamma / h) + u
    u1 = u0 + (mu_gamma + (0.5 - rho ** 2) * sigma_alpha_gamma**2) * T_alpha
    u2 = u0 + (mu_gamma - 0.5 * sigma_alpha_gamma**2) * T_alpha
    return 0.5 * (S_alpha_gamma * exp(r) * cnd_erf(u1 / d) - h * cnd_erf(u2 / d))


def h(v, X, S_alpha_beta, mu_beta, sigma_alpha_beta, T_alpha):
    r = (mu_beta - 0.5 * sigma_alpha_beta * sigma_alpha_beta) * T_alpha + \
        sigma_alpha_beta * sqrt(T_alpha) * v
    return X + S_alpha_beta * exp(r)

def get_fixings(tenor1, tenor2):
    securities = [f"USISDA{t:02} Index" for t in [tenor1, tenor2]]
    with init_bbg_session(BBG_IP) as session:
        field = "PX_LAST"
        fixings = retrieve_data(session, securities, field)
    return fixings

def get_forward(tenor1, tenor2, maturity):
    yc = YC()
    yc.extrapolation = True

    USISDA1 = UsdLiborSwapIsdaFixAm(Period(tenor1, Years), forwarding=yc, discounting=yc)
    USISDA1.add_fixing(Date(25, 1, 2018), 0.02781)
    USISDA2 = UsdLiborSwapIsdaFixAm(Period(tenor2, Years), forwarding=yc, discounting=yc)
    USISDA2.add_fixing(Date(25, 1, 2018), 0.02283)
    USFS1 = USISDA1.underlying_swap(maturity)
    USFS2 = USISDA2.underlying_swap(maturity)
    return USFS1.fair_rate - USFS2.fair_rate

def globeop_model(sigma0202, sigma0230, rho, forward, strike, maturity):
    vol_spread = sqrt(sigma0202**2 + sigma0230**2 - 2 * rho * sigma02 * sigma0230)
    return black(forward, strike, T, False)