aboutsummaryrefslogtreecommitdiffstats
path: root/python/analytics/cms_spread.py
blob: 71b8f6015e41d89e314be3f57011f28a72470049 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import datetime
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from .tranche_functions import GHquad
from math import exp, sqrt, log
from .black import bachelier
from bbg_helpers import BBG_IP, retrieve_data, init_bbg_session
from quantlib.time.api import (
    Date, Period, Days, Months, Years, UnitedStates, Actual365Fixed, today,
    Following)
from quantlib.time.calendars.united_states import GovernmentBond
from quantlib.indexes.swap.usd_libor_swap import UsdLiborSwapIsdaFixAm
from quantlib.experimental.coupons.swap_spread_index import SwapSpreadIndex
from quantlib.experimental.coupons.lognormal_cmsspread_pricer import \
    LognormalCmsSpreadPricer
from quantlib.termstructures.volatility.api import (
    VolatilityType, SwaptionVolatilityMatrix)
from quantlib.cashflows.conundrum_pricer import (
    YieldCurveModel, NumericHaganPricer, AnalyticHaganPricer)
from quantlib.quotes import SimpleQuote

from quantlib.math.matrix import Matrix
from scipy.interpolate import RectBivariateSpline
from yieldcurve import YC
from db import dbconn

def CMS_spread(T_alpha, X, beta, gamma):
    Z, w = GHquad(100)
    return np.inner(f(Z), w)

def f(v, X, S_alpha_beta, S_alpha_gamma, mu_beta, mu_gamma, T_alpha, rho):
    h = h(v, X, S_alpha_beta, mu_beta, sigma_alpha_beta, T_alpha)
    u = rho * sigma_alpha_gamma * sqrt(T_alpha) * v
    d = sigma_alpha_gamma * sqrt(T_alpha) * sqrt(1 - rho ** 2)
    r = mu_gamma * T_alpha - 0.5 * rho * rho * sigma_alpha_gamma ** 2 * T_alpha + u
    u0 = log(S_alpha_gamma / h) + u
    u1 = u0 + (mu_gamma + (0.5 - rho ** 2) * sigma_alpha_gamma**2) * T_alpha
    u2 = u0 + (mu_gamma - 0.5 * sigma_alpha_gamma**2) * T_alpha
    return 0.5 * (S_alpha_gamma * exp(r) * cnd_erf(u1 / d) - h * cnd_erf(u2 / d))


def h(v, X, S_alpha_beta, mu_beta, sigma_alpha_beta, T_alpha):
    r = (mu_beta - 0.5 * sigma_alpha_beta * sigma_alpha_beta) * T_alpha + \
        sigma_alpha_beta * sqrt(T_alpha) * v
    return X + S_alpha_beta * exp(r)

def get_fixings(conn, tenor1, tenor2, fixing_date=None):
    if fixing_date:
        sql_str = f'SELECT fixing_date, "{tenor1}y" ,"{tenor2}y" FROM USD_swap_fixings ' \
                  'WHERE fixing_date=%s'
        with conn.cursor() as c:
            c.execute(sql_str)
            date, fixing1, fixing2 = next(c)
    else:
        sql_str = f'SELECT fixing_date, "{tenor1}y" ,"{tenor2}y" FROM USD_swap_fixings ' \
                  'ORDER BY fixing_date DESC LIMIT 1'
        with conn.cursor() as c:
            c.execute(sql_str, fixing_date)
            date, fixing1, fixing2 = next(c)

    date = Date.from_datetime(date)
    fixing1 = float(fixing1)
    fixing2 = float(fixing2)
    return date, fixing1, fixing2

def get_forward_spread(tenor1, tenor2, maturity):
    yc = YC()
    yc.extrapolation = True
    conn = dbconn('serenitasdb')
    fixing_date, fixing1, fixing2 = get_fixings(conn, tenor1, tenor2)
    USISDA1 = UsdLiborSwapIsdaFixAm(Period(tenor1, Years), yc, yc)
    USISDA1.add_fixing(fixing_date, fixing1)
    USISDA2 = UsdLiborSwapIsdaFixAm(Period(tenor2, Years), yc, yc)
    USISDA2.add_fixing(fixing_date, fixing2)
    spread_index = SwapSpreadIndex(f"{tenor1}-{tenor2}", USISDA1, USISDA2)
    expiration = UnitedStates(GovernmentBond).advance(
        Date.from_datetime(maturity),
        0, Days)
    return spread_index.fixing(expiration)

def get_swaption_vol_data(source="ICPL", vol_type=VolatilityType.ShiftedLognormal):
    if vol_type == VolatilityType.Normal:
        table_name = "swaption_normal_vol"
    else:
        table_name = "swaption_lognormal_vol"
    sql_str = f"SELECT * FROM {table_name} WHERE source = %s ORDER BY date DESC LIMIT 1"
    conn = dbconn('serenitasdb')
    with conn.cursor() as c:
        c.execute(sql_str, (source,))
        surf_data = next(c)
    return surf_data[0], np.array(surf_data[1:-1], order='F').T, vol_type

def get_swaption_vol_surface(date, data, vol_type):
    tenors = [1/12, 0.25, 0.5, 0.75] + list(range(1, 11)) + [15., 20., 25., 30.]
    return RectBivariateSpline(tenors, tenors[-14:], data.T)

def get_swaption_vol_matrix(date, data, vol_type):
    # figure out what to do with nan
    calendar = UnitedStates()
    data= np.delete(data, 3, axis=0)
    m = Matrix.from_ndarray(data)
    print(m.to_ndarray())
    option_tenors = [Period(i, Months) for i in [1, 3, 6]] + \
                    [Period(i, Years) for i in range(1, 11)] + \
                    [Period(i, Years) for i in [15, 20, 25, 30]]
    swap_tenors = option_tenors[-14:]
    return (SwaptionVolatilityMatrix.
            from_reference_date(Date.from_datetime(date),
                                calendar,
                                Following,
                                option_tenors,
                                swap_tenors,
                                m,
                                Actual365Fixed(),
                                vol_type=vol_type))

def quantlib_model(atm_vol, model, vol_type, corr):
    pricer = NumericHaganPricer(atm_vol, model, SimpleQuote(0.))
    yc = YC()
    cmsspread_pricer = LognormalCmsSpreadPricer(pricer,
                                                SimpleQuote(corr),
                                                yc,
                                                vol_type=vol_type)
    return cmsspread_pricer

def plot_surf(surf, tenors):
    xx, yy = np.meshgrid(tenors, tenors[-14:])
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    ax.plot_surface(xx, yy, surf.ev(xx, yy))

def globeop_model(tenor1, tenor2, rho, strike, maturity):
    forward = get_forward_spread(tenor1, tenor2, maturity)
    surf = get_swaption_vol_surface()

    T = Actual365Fixed().year_fraction(today(), Date.from_datetime(maturity))
    vol1 = float(surf(T, tenor1 )) * 0.01
    vol2 = float(surf(T, tenor2)) * 0.01
    vol_spread = sqrt(vol1**2 + vol2**2 - 2 * rho * vol1 * vol2)
    yc = YC()
    # the normal vols are not scale invariant. We multiply by 100 to get in percent terms.
    return yc.discount(T) * bachelier(forward*100, strike*100, T, vol_spread)