aboutsummaryrefslogtreecommitdiffstats
path: root/python/analytics/credit_default_swap.py
blob: e499865739e3dfdb5b7b3d8644daaed3d98943fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import array
import datetime
import math
import numpy as np
import pandas as pd
import warnings

from dateutil.relativedelta import relativedelta
from itertools import chain
from pandas.tseries.offsets import BDay
from pyisda.curve import SpreadCurve
from pyisda.date import previous_twentieth
from pyisda.legs import ContingentLeg, FeeLeg
from termcolor import colored
from .utils import build_table
from weakref import WeakSet
from yieldcurve import get_curve, rate_helpers, YC, ql_to_jp


class CreditDefaultSwap:
    """ minimal class to represent a credit default swap """

    __slots__ = (
        "_observed",
        "fixed_rate",
        "notional",
        "_start_date",
        "_end_date",
        "recovery",
        "_version",
        "_fee_leg",
        "_default_leg",
        "_value_date",
        "_yc",
        "_sc",
        "_risky_annuity",
        "_spread",
        "_price",
        "name",
        "issue_date",
        "currency",
        "_step_in_date",
        "_accrued",
        "_cash_settle_date",
        "_dl_pv",
        "_pv",
        "_clean_pv",
        "_original_clean_pv",
        "_trade_date",
        "_factor",
    )

    def __init__(
        self, start_date, end_date, recovery, fixed_rate, notional=10e6, issue_date=None
    ):
        """
        start_date : :class:`datetime.date`
            index start_date (Could be issue date, or last imm date)
        end_date : :class:`datetime.date`
            index last date
        recovery :
            recovery rate (between 0 and 1)
        fixed_rate :
            fixed coupon (in bps)
        """
        self.fixed_rate = fixed_rate
        self.notional = notional
        self._start_date = start_date
        self._end_date = end_date
        self.recovery = recovery

        self._fee_leg = FeeLeg(self._start_date, end_date, True, 1.0, 1.0)
        self._default_leg = ContingentLeg(self._start_date, end_date, True)
        self._value_date = None
        self._yc, self._sc = None, None
        self._risky_annuity = None
        self._spread, self._price = None, None
        self.name = None
        self.issue_date = issue_date
        self._factor = 1
        for attr in [
            "currency",
            "_step_in_date",
            "_cash_settle_date",
            "_accrued",
            "_dl_pv",
            "_pv",
            "_clean_pv",
            "_original_clean_pv",
            "_trade_date",
        ]:
            setattr(self, attr, None)
        self._observed = WeakSet()

    def __hash__(self):
        return hash(tuple(getattr(self, k) for k in self._getslots()))

    def _getslots(self):
        classes = reversed(self.__class__.__mro__)
        next(classes)  # skip object
        slots = chain.from_iterable(cls.__slots__ for cls in classes)
        next(slots)  # skip _observed
        yield from slots

    def __getstate__(self):
        return {k: getattr(self, k) for k in self._getslots()}

    def __setstate__(self, state):
        for name, value in state.items():
            setattr(self, name, value)
        self._observed = WeakSet()

    @property
    def start_date(self):
        return self._start_date

    @property
    def end_date(self):
        return self._end_date

    @start_date.setter
    def start_date(self, d):
        self._fee_leg = FeeLeg(d, self.end_date, True, 1.0, 1.0)
        self._default_leg = ContingentLeg(d, self.end_date, True)
        self._start_date = d

    @end_date.setter
    def end_date(self, d):
        self._fee_leg = FeeLeg(self.start_date, d, True, 1.0, 1.0)
        self._default_leg = ContingentLeg(self.start_date, d, True)
        self._end_date = d

    @property
    def spread(self):
        if self._spread is not None:
            return self._spread * 1e4
        else:
            return None

    @property
    def direction(self):
        if self.notional > 0.0:
            return "Buyer"
        else:
            return "Seller"

    @direction.setter
    def direction(self, d):
        if d == "Buyer":
            self.notional = abs(self.notional)
        elif d == "Seller":
            self.notional = -abs(self.notional)
        else:
            raise ValueError("Direction needs to be either 'Buyer' or 'Seller'")

    def _update(self):
        self._sc = SpreadCurve(
            self._yc.base_date,
            self._yc,
            self.start_date,
            self._step_in_date,
            self._cash_settle_date,
            [self.end_date],
            np.array([self._spread]),
            np.zeros(1),
            np.array([self.recovery]),
        )

        self._risky_annuity = self._fee_leg.pv(
            self.value_date,
            self._step_in_date,
            self._cash_settle_date,
            self._yc,
            self._sc,
            False,
        )
        self._dl_pv = self._default_leg.pv(
            self.value_date,
            self._step_in_date,
            self._cash_settle_date,
            self._yc,
            self._sc,
            self.recovery,
        )
        self._pv = self._dl_pv - self._risky_annuity * self.fixed_rate * 1e-4
        self._clean_pv = self._pv + self._accrued * self.fixed_rate * 1e-4
        self._price = 100 * (1 - self._clean_pv)

    @spread.setter
    def spread(self, s):
        """ s: spread in bps """
        if self.spread is None or s != self.spread:
            self._spread = s * 1e-4
            self._update()
            self.notify()

    @property
    def flat_hazard(self):
        sc_data = self._sc.inspect()["data"]
        # conversion to continuous compounding
        return sc_data[0][1]

    @property
    def pv(self):
        return self.notional * self._factor * self._pv

    @pv.setter
    def pv(self, val):
        self._pv = -val / (self.notional * self._factor)
        self._clean_pv = self._pv + self._accrued * self.fixed_rate * 1e-4
        self.price = 100 * (1 - self._clean_pv)

    @property
    def accrued(self):
        return -self.notional * self._factor * self._accrued * self.fixed_rate * 1e-4

    @property
    def days_accrued(self):
        return int(self._accrued * 360)

    @property
    def clean_pv(self):
        return self.notional * self._factor * self._clean_pv

    @property
    def price(self):
        return self._price

    @price.setter
    def price(self, val):
        if self._price is None or math.fabs(val - self._price) > 1e-6:
            self._clean_pv = (100 - val) / 100
            self._sc = SpreadCurve(
                self.value_date,
                self._yc,
                self.start_date,
                self._step_in_date,
                self._cash_settle_date,
                [self.end_date],
                array.array("d", [self.fixed_rate * 1e-4]),
                array.array("d", [self._clean_pv]),
                array.array("d", [self.recovery]),
            )
            self._risky_annuity = self._fee_leg.pv(
                self.value_date,
                self._step_in_date,
                self._cash_settle_date,
                self._yc,
                self._sc,
                False,
            )
            self._dl_pv = self._default_leg.pv(
                self.value_date,
                self._step_in_date,
                self._cash_settle_date,
                self._yc,
                self._sc,
                self.recovery,
            )
            self._pv = self._clean_pv - self._accrued * self.fixed_rate * 1e-4
            self._spread = (
                self._clean_pv / (self._risky_annuity - self._accrued)
                + self.fixed_rate * 1e-4
            )
            self._price = val
            self.notify()

    @property
    def DV01(self):
        old_pv, old_spread = self.pv, self.spread
        self.spread += 1
        dv01 = self.pv - old_pv
        self.spread = old_spread
        return dv01

    @property
    def theta(self):
        old_pv, old_value_date = self.clean_pv, self.value_date
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            self.value_date = self.value_date + relativedelta(days=1)
        carry = self.notional * self.fixed_rate * 1e-4 / 360
        roll_down = self.clean_pv - old_pv
        self.value_date = old_value_date
        return carry + roll_down

    @property
    def IRDV01(self):
        old_pv, old_yc = self.pv, self._yc
        # for rh in self._helpers:
        #     rh.quote += 1e-4
        # self._yc = ql_to_jp(self._ql_yc)
        helpers = rate_helpers(self.currency, evaluation_date=self.value_date)
        for rh in helpers:
            rh.quote.value += 1e-4
        ql_yc = YC(helpers)
        self._yc = ql_to_jp(ql_yc)
        self._update()  # to force recomputation
        new_pv = self.pv
        # for r in self._helpers:
        #     r.quote -= 1e-4
        self._yc = old_yc
        self._update()
        return new_pv - old_pv

    @property
    def rec_risk(self):
        old_recovery = self.recovery
        self.recovery = old_recovery - 0.01
        self._update()
        pv_minus = self.pv
        self.recovery = old_recovery + 0.01
        self._update()
        pv_plus = self.pv
        self.recovery = old_recovery
        self._update()
        return (pv_plus - pv_minus) / 2

    @property
    def jump_to_default(self):
        return -self.notional * (self.recovery + self._clean_pv - 1)

    @property
    def risky_annuity(self):
        return self._risky_annuity - self._accrued

    @property
    def value_date(self):
        if self._value_date is None:
            raise AttributeError("Please set value_date first")
        else:
            return self._value_date

    @value_date.setter
    def value_date(self, d):
        if isinstance(d, datetime.datetime):
            d = d.date()
        self.start_date = previous_twentieth(d)
        self._yc = get_curve(d, self.currency)
        self._value_date = d
        self._step_in_date = d + datetime.timedelta(days=1)
        self._accrued = self._fee_leg.accrued(self._step_in_date)
        self._cash_settle_date = pd.Timestamp(self._value_date) + 3 * BDay()
        if self._spread is not None:
            self._update()
        self.notify()

    def reset_pv(self):
        self._original_clean_pv = self._clean_pv
        self._trade_date = self._value_date

    @property
    def pnl(self):
        if self._original_clean_pv is None:
            raise ValueError("original pv not set")
        else:
            days_accrued = (self.value_date - self._trade_date).days / 360
            return self.notional * (
                self._clean_pv
                - self._original_clean_pv
                - days_accrued * self.fixed_rate * 1e-4
            )

    def notify(self):
        for obj in self._observed:
            obj._update()

    def observe(self, obj):
        self._observed.add(obj)

    def shock(self, params, *, spread_shock, **kwargs):
        r = []
        actual_params = [p for p in params if hasattr(self, p)]
        orig_spread = self.spread
        for ss in spread_shock:
            self.spread = orig_spread * (1 + ss)
            r.append([getattr(self, p) for p in actual_params])
        self.spread = orig_spread
        ind = pd.Index(spread_shock, name="spread_shock", copy=False)
        return pd.DataFrame(r, index=ind, columns=actual_params)

    def __repr__(self):
        if not self.spread:
            raise ValueError("Market spread is missing!")
        if self.days_accrued > 1:
            accrued_str = "Accrued ({} Days)".format(self.days_accrued)
        else:
            accrued_str = "Accrued ({} Day)".format(self.days_accrued)

        s = [
            "{:<20}\tNotional {:>5}MM {}\tFactor {:>28}".format(
                "Buy Protection" if self.notional > 0.0 else "Sell Protection",
                abs(self.notional) / 1_000_000,
                self.currency,
                self._factor,
            ),
            "{:<20}\t{:>15}".format("CDS Index", colored(self.name, attrs=["bold"])),
            "",
        ]
        rows = [
            ["Trd Sprd (bp)", self.spread, "Coupon (bp)", self.fixed_rate],
            ["1st Accr Start", self.issue_date, "Payment Freq", "Quarterly"],
            ["Maturity Date", self.end_date, "Rec Rate", self.recovery],
            ["Bus Day Adj", "Following", "DayCount", "ACT/360"],
        ]
        format_strings = [
            [None, "{:.2f}", None, "{:.0f}"],
            [None, "{:%m/%d/%y}", None, None],
            [None, "{:%m/%d/%y}", None, None],
            [None, None, None, None],
        ]
        s += build_table(rows, format_strings, "{:<20}{:>19}\t\t{:<20}{:>15}")
        s += ["", colored("Calculator", attrs=["bold"])]
        rows = [
            ["Valuation Date", self.value_date],
            ["Cash Settled On", self._cash_settle_date],
        ]
        format_strings = [[None, "{:%m/%d/%y}"], [None, "{:%m/%d/%y}"]]
        s += build_table(rows, format_strings, "{:<20}\t{:>15}")
        s += [""]
        rows = [
            ["Price", self.price, "Spread DV01", self.DV01],
            ["Principal", self.clean_pv, "IR DV01", self.IRDV01],
            [accrued_str, self.accrued, "Rec Risk (1%)", self.rec_risk],
            ["Cash Amount", self.pv, "Def Exposure", self.jump_to_default],
        ]
        format_strings = [
            [None, "{:.8f}", None, "{:,.2f}"],
            [None, "{:,.0f}", None, "{:,.2f}"],
            [None, "{:,.0f}", None, "{:,.2f}"],
            [None, "{:,.0f}", None, "{:,.0f}"],
        ]
        s += build_table(rows, format_strings, "{:<20}{:>19}\t\t{:<20}{:>15}")
        return "\n".join(s)