aboutsummaryrefslogtreecommitdiffstats
path: root/python/analytics/curve_trades.py
blob: ea3ee3b1440992391c24f42c44ef9040f903a8df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
from .index_data import get_index_quotes, index_returns
from . import on_the_run
from . import serenitas_engine, dawn_engine
from analytics import CreditIndex, Portfolio
from analytics.utils import roll_date
from dateutil.relativedelta import relativedelta
from analytics.basket_index import MarkitBasketIndex
from statsmodels.sandbox.regression.predstd import wls_prediction_std
from scipy.interpolate import interp1d
from itertools import chain
from copy import deepcopy
from matplotlib import cm

import datetime
import pandas as pd
import math
import statsmodels.formula.api as smf
import numpy as np
import matplotlib.pyplot as plt


def curve_spread_diff(index='IG', rolling=6, years=3, percentage=False, percentage_base='5yr'):
    otr = on_the_run(index)
    # look at spreads
    df = get_index_quotes(index, list(range(otr - rolling, otr + 1)),
                          tenor=['3yr', '5yr', '7yr', '10yr'], years=years)
    spreads = df.groupby(level=['date', 'tenor']).nth(-1)['close_spread'].unstack(-1)
    spreads_diff = spreads.diff(axis=1)
    del spreads_diff['3yr']
    spreads_diff.columns = ['3-5', '5-7', '7-10']
    spreads_diff['5-10'] = spreads_diff['5-7'] + spreads_diff['7-10']
    if percentage is True:
        spreads_diff = spreads.apply(lambda df: df/df[percentage_base], axis=1)
    return spreads_diff


def spreads_diff_table(spreads_diff):
    def current(s):
        return s.iat[-1]

    def zscore(s):
        return (s.iat[-1] - s.mean()) / s.std()
    df = spreads_diff.agg(['min', 'max', 'mean', current, zscore])
    ((spreads_diff - spreads_diff.mean())/spreads_diff.std()).plot()
    return df


def theta_matrix_by_series(index='IG', rolling=6):
    otr = on_the_run(index)
    df = get_index_quotes(index, list(range(otr - rolling, otr + 1)),
                          tenor=['3yr', '5yr', '7yr', '10yr'])
    #now get_index_quotes are all based on theta2/duration2
    df['theta_per_dur'] = df.theta / df.duration
    theta_matrix = df.groupby(level=['date', 'tenor','series']).nth(-1)['theta_per_dur']
    theta_matrix = theta_matrix.loc[theta_matrix.index[-1][0]].unstack(0)
    return theta_matrix[['3yr', '5yr', '7yr', '10yr']]


def ratio_within_series(index='IG', rolling=6, param='duration'):
    otr = on_the_run(index)
    df = get_index_quotes(index, list(range(otr - rolling, otr + 1)),
                          tenor=['3yr', '5yr', '7yr', '10yr']).unstack()
    ratio = (df[param].
             apply(lambda s: s / df[param]['5yr'].values, raw=True))
    ratio.columns = pd.MultiIndex.from_product([[f"{param}_ratio_to_5yr"],
                                                ratio.columns])
    df = df.join(ratio).groupby(['date']).tail(1)
    df = df.reset_index(level=['index', 'version'], drop=True)
    return df


def on_the_run_theta(index='IG', rolling=6):
    otr = on_the_run(index)
    df = get_index_quotes(index, list(range(otr - rolling, otr + 1)),
                          tenor=['3yr', '5yr', '7yr', '10yr'])
    df['theta_per_dur'] = df.theta/df.duration
    theta_matrix = df.groupby(level=['date', 'tenor']).nth(-1)['theta_per_dur']
    theta_matrix.unstack(-1).plot()

def curve_returns(index='IG', rolling=6, years=3):
    # look at returns
    otr = on_the_run(index)
    df = index_returns(index=index, series=list(range(otr - rolling, otr + 1)),
                       tenor=['3yr', '5yr', '7yr', '10yr'], years=years)
    # on-the-run returns
    df = df.reset_index('index', drop=True)
    returns = df.price_return.dropna().unstack('tenor').groupby(level='date').nth(-1)

    strategies_return = pd.DataFrame(
        {'5-10': 1.78 * returns['5yr'] - returns['10yr'],
         '7-10': 1.33 * returns['7yr'] - returns['10yr'],
         '3-5-10': -2 * returns['3yr'] + 3 * returns['5yr'] - returns['10yr'],
         '3-5': returns['5yr'] - 1.56 * returns['3yr'],
         '3-7': returns['7yr'] - 2.07 * returns['3yr'],
         '5yr long': returns['5yr']})

    return strategies_return


def curve_returns_stats(strategies_return):

    '''
    Takes a curve_return df'''

    strategies_return_monthly = (strategies_return.
                                 groupby(pd.Grouper(freq='M')).
                                 agg(lambda df: (1 + df).prod() - 1))

    def sharpe(df, period="daily"):
        if period == "daily":
            return df.mean() / df.std() * math.sqrt(252)
        else:
            return df.mean() / df.std() * math.sqrt(12)

    results = strategies_return.agg([sharpe, lambda df: df.nsmallest(10).mean(), lambda df: df.std()])
    sharpe_monthly = strategies_return_monthly.agg(sharpe, period="monthly")
    sharpe_monthly.name = 'Monthly Sharpe'
    results.index = ['Sharpe', 'Mean Worst 10 Days DrawDown', 'Standard Deviation']
    return results.append(sharpe_monthly)


def cross_series_curve(index='IG', rolling=6):
    otr = on_the_run(index)
    df = index_returns(index= index, series=list(range(otr - rolling, otr + 1)),
                       tenor=['3yr', '5yr', '7yr', '10yr'])
    # look cross series - 3y to 5y
    df = df.reset_index().set_index(['date', 'index', 'tenor', 'series'])
    returns1 = df.xs(['5yr', index], level=['tenor','index']).price_return.unstack(-1)
    price_diff = pd.DataFrame()
    for ind in list(range(otr - 2, otr + 1)):
        price_diff[ind] = returns1[ind] - 1.6 * returns1[ind - 4]

    price_diff = price_diff.stack().groupby(level='date').nth(-1)
    monthly_returns_cross_series = (price_diff.
                                    groupby(pd.Grouper(freq='M')).
                                    agg(lambda df: (1 + df).prod() - 1))
    plt.plot(monthly_returns_cross_series)


def forward_loss(index='IG'):
    start_date = (pd.Timestamp.now() - pd.DateOffset(years=3)).date()

    df = pd.read_sql_query("SELECT date, index, series, tenor, duration, close_spread, "\
                           "close_spread*duration / 100 AS indexel " \
                           "FROM index_quotes WHERE index=%s AND date >= %s " \
                           "ORDER BY date DESC, series ASC, duration ASC",
                           serenitase_engine, parse_dates=['date'], params=[index, start_date])
    df1 = pd.read_sql_query("SELECT index, series, tenor, maturity FROM index_maturity",
                            serenitas_engine, parse_dates=['maturity'])

    df = df.merge(df1, on=['index','series','tenor'])
    df = df.set_index(['date','index', 'maturity']).dropna()
    df = df.groupby(level=['date','index', 'maturity']).nth(-1)
    # annual change, to take out some noise
    df['fwd_loss_rate'] = df.indexel.diff(2)/df.duration.diff(2)


def curve_model(tenor_1='5yr', tenor_2='10yr'):
    #OLS model
    df = ratio_within_series(param='close_spread')
    df = pd.concat([df.duration[tenor_1], df.duration[tenor_2],
                    df.close_spread[tenor_1],
                    df.close_spread_ratio_to_5yr[tenor_2],
                    df.theta[tenor_1], df.theta[tenor_2]],
                   axis=1,
                   keys=['duration1', 'duration2', 'close_spread',
                         'ratio', 'theta1', 'theta2'])
    df = np.log(df)
    ols_model = smf.ols('ratio ~ close_spread + duration1 + theta1 + theta2',
                        data=df).fit()
    return df, ols_model


def curve_model_results(df, model):
    df = df.dropna()
    a, b, c = wls_prediction_std(model)
    b.name = 'down_2_stdev'
    c.name = 'up_2_stdev'
    df = df.join(b)
    df = df.join(c)
    #dr/dspread = exp(k) + spread_coeff * duration ^ dur_coeff * spread ^ (spread_coeff-1)
    cols = ['ratio', 'close_spread', 'down_2_stdev', 'up_2_stdev']
    df[cols] = np.exp(df[cols])
    df['predicted'] = np.exp(model.predict())
    df[['predicted', 'down_2_stdev', 'up_2_stdev']]=\
        df[['predicted', 'down_2_stdev', 'up_2_stdev']].multiply(df['close_spread'].values, axis=0)
    ax = df[['predicted', 'down_2_stdev', 'up_2_stdev']].reset_index(level='series', drop=True).plot()
    df['dr_dspread'] = np.exp(model.params[0]) * model.params[2] * df.duration1 ** model.params[1] * df.close_spread ** (model.params[2] - 1)
    return df


def spread_fin_crisis(index='IG'):
    otr = on_the_run(index)
    # look at spreads
    df = get_index_quotes(index, list(range(8, otr + 1)),
                          tenor=['3yr', '5yr', '7yr', '10yr'], years=20)
    spreads = df.groupby(level=['date', 'tenor']).nth(-1)['close_spread'].unstack(-1)
    spreads_diff = spreads.diff(axis=1)
    to_plot = pd.DataFrame()
    to_plot['spread'] = spreads['5yr']
    to_plot['3 - 5 diff'] = spreads_diff['5yr']
    to_plot['5 - 10 diff'] = spreads_diff['7yr'] + spreads_diff['10yr']

    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax2 = ax.twinx() # Create another axes that shares the same x-axis as ax

    width = 0.4
    to_plot['spread'].plot(color='red', ax=ax)
    to_plot['5 - 10 diff'].plot(color='blue', ax=ax2)
    to_plot['3 - 5 diff'].plot(color='green', ax=ax2)
    plt.legend(bbox_to_anchor=(.5, -.1), ncol = 2)

    plt.show()


def forward_spread(report_date, index='IG', series=None, tenors=['3yr', '5yr', '7yr', '10yr']):

    if series is None:
        series = on_the_run(index = index)
    b_index = MarkitBasketIndex(index, series, tenors, value_date=report_date)
    b_index.tweak()

    f_spread = []
    date_range = pd.bdate_range(pd.datetime.today(), max(b_index.maturities), freq='M')
    for d in date_range.date:
        b_index.value_date = d
        f_spread.append(b_index.spread())
    return pd.concat(f_spread, keys=date_range).unstack(-1)


def spot_forward(index='IG', series=None, tenors=['3yr', '5yr', '7yr', '10yr']):

    '''
    Calculates the 1-year forward spot rate '''

    if series is None:
        series = on_the_run(index)
    b_index = MarkitBasketIndex(index, series, tenors)
    b_index.tweak()

    spreads_current = b_index.spread()
    spreads_current.name = 'current'
    spreads_1yr = pd.Series([b_index.spread(m - relativedelta(years=1), b_index.coupon(m)) \
                             for m in b_index.maturities], index=tenors)
    spreads_1yr.name = '1yr'
    df = pd.concat([spreads_current, spreads_1yr], axis=1)
    maturity_1yr = roll_date(b_index.index_desc.issue_date[0], 1)
    df_0 = pd.DataFrame({'current':[0., b_index.spread(maturity_1yr,
                                                       0.01 if index == "IG" else 0.05)],
                         '1yr': [0., 0.]}, index=['0yr', '1yr'])
    df_0.index.name = 'tenor'
    df = df_0.append(df)
    df['maturity'] = [b_index.value_date, maturity_1yr] + b_index.maturities
    return df.reset_index().set_index('maturity')


def curve_pos(value_date, index_type='IG'):

    '''
    value_date : :class:`datetime.date`
    index : string
        one of 'IG', 'HY' or 'EU'

    Returns a Portfolio of curve trades '''
    if index_type == "EU":
        index_type = "ITRX"
    sql_string = "SELECT index, series, tenor, notional "\
                 "FROM list_cds_positions(%s, %s) " \
                 "JOIN index_desc " \
                 "ON security_id=redindexcode AND " \
                 "index_desc.maturity=list_cds_positions.maturity"
    df = pd.read_sql_query(sql_string, dawn_engine,
                           params=[value_date, f'SER_{index_type}CURVE'])

    portf = Portfolio([CreditIndex(row.index, row.series, row.tenor,
                                   value_date, -row.notional)
                      for row in df[['index', 'tenor', 'series', 'notional']].
                       itertuples(index=False)])
    portf.mark()
    return portf


def curve_shape(value_date, index='IG', percentile=.95, spread=None):

    '''
    Returns a function to linearly interpolate between the curve
    based on maturity (in years)'''

    curve_shape = curve_spread_diff(index, 10, 5, True)
    steepness = (curve_shape['10yr']/curve_shape['3yr'])
    series = on_the_run(index)

    if spread is None:
        sql_string = "SELECT closespread FROM index_quotes where index = %s " \
            "and series = %s and tenor = %s and date = %s"
        spread_df = pd.read_sql_query(sql_string, serenitas_engine,
                                      params=[index, series, '5yr', value_date])
        spread = spread_df.iloc[0][0]
    sql_string = "SELECT tenor, maturity FROM index_maturity where index = %s and series = %s"
    lookup_table = pd.read_sql_query(sql_string, serenitas_engine, parse_dates=['maturity'],
                                     params=[index, series])

    df = curve_shape[steepness == steepness.quantile(percentile, 'nearest')]
    df = df * spread/df['5yr'][0]
    df = df.stack().rename('spread')
    df = df.reset_index().merge(lookup_table, on=['tenor'])
    df['year_frac'] = (df.maturity - pd.to_datetime(value_date)).dt.days/365
    return interp1d(np.hstack([0, df.year_frac]), np.hstack([0, df.spread]))


def plot_curve_shape(date):

    '''
    Plots the curve shape that's being used for the scenarios'''

    curve_per = np.arange(.01, .99, .1)
    time_per = np.arange(.1, 10.1, .5)
    r=[]
    for per in curve_per:
        shape = curve_shape(date, percentile = per)
        r.append(shape(time_per))
    df = pd.DataFrame(r, index=curve_per, columns=time_per)
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    xx, yy = np.meshgrid(curve_per, time_per)
    z = np.vstack(r).transpose()
    surf = ax.plot_surface(xx, yy, z, cmap=cm.viridis)
    ax.set_xlabel("steepness percentile")
    ax.set_ylabel("tenor")
    ax.set_zlabel("spread")


def pos_pnl_abs(portf, value_date, index='IG', rolling=6, years=3):

    '''
    Runs PNL analysis on portf using historical on-the-run spread levels -
    off-the-runs spreads are duration linearly interpolated'''

    series = on_the_run(index)
    df = get_index_quotes(index, list(range(series - rolling, series + 1)),
                          tenor=['3yr', '5yr', '7yr', '10yr'], years=years)
    df = df.groupby(level=['date', 'tenor']).nth(-1)['close_spread'].unstack(-1)

    sql_string = "SELECT tenor, maturity FROM index_maturity where index = %s and series = %s"
    lookup_table = pd.read_sql_query(sql_string, serenitas_engine, parse_dates=['maturity'],
                                     params=[index, series])
    lookup_table['year_frac'] = (lookup_table.maturity - pd.to_datetime(value_date)).dt.days/365

    portf_copy = deepcopy(portf)
    portf_copy.reset_pv()

    r = []
    for date, row in df.iterrows():
        f = interp1d(np.hstack([0, lookup_table['year_frac']]), np.hstack([row[0]/2, row]))
        for ind in portf_copy.indices:
            ind.spread = f((ind.end_date - value_date).days/365)
        r.append([[date, f(5)] + [portf_copy.pnl]])
    df = pd.DataFrame.from_records(chain(*r), columns=['date', 'five_yr_spread', 'pnl'])
    return df.set_index('date')


def curve_scen_table(portf, shock=10):
    '''
    Runs PNL scenario on portf by shocking different points on the curve.
    off-the-runs shocks are linearly interpolated'''
    otr_year_frac = np.array([(e - portf.value_date).days / 365 \
                              for e in roll_date(portf.value_date, [3, 5, 10])])
    portf_year_frac = [(ind.end_date - ind.value_date).days / 365 for ind in portf.indices]
    r = []
    for i, tenor1 in enumerate(['3yr', '5yr', '10yr']):
        for j, tenor2 in enumerate(['3yr', '5yr', '10yr']):
            shocks = np.full(4, 0)
            shocks[i+1] += shock
            shocks[j+1] -= shock
            # f is the shock amount interpolated based on tenor
            f = interp1d(np.hstack([0, otr_year_frac]), shocks)
            portf_copy = deepcopy(portf)
            portf_copy.reset_pv()
            for ind, yf in zip(portf_copy.indices, portf_year_frac):
                ind.spread += float(f(yf))
            r.append((tenor1, tenor2, portf_copy.pnl))
    return pd.DataFrame.from_records(r, columns=['tighter', 'wider', 'pnl'])