1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
|
import analytics
import array
import datetime
import pandas as pd
from .credit_default_swap import CreditDefaultSwap
from . import serenitas_engine, dawn_engine, DataError
try:
from bbg_helpers import BBG_IP, retrieve_data, init_bbg_session
except ModuleNotFoundError:
pass
from pandas.tseries.offsets import BDay
from pyisda.curve import SpreadCurve
from pyisda.date import previous_twentieth
from termcolor import colored
from .utils import build_table
def g(index, spread, exercise_date, pv=None):
"""computes the strike clean price using the expected forward yield curve. """
step_in_date = exercise_date + datetime.timedelta(days=1)
exercise_date_settle = pd.Timestamp(exercise_date) + 3 * BDay()
if spread is None and index._sc is not None:
sc = index._sc
prot = index._default_leg.pv(
exercise_date,
step_in_date,
exercise_date_settle,
index._yc,
index._sc,
index.recovery,
)
else:
rates = array.array("d", [spread * 1e-4])
upfront = 0.0 if pv is None else pv
sc = SpreadCurve(
exercise_date,
index._yc,
index.start_date,
step_in_date,
exercise_date_settle,
[index.end_date],
rates,
array.array("d", [upfront]),
array.array("d", [index.recovery]),
)
a = index._fee_leg.pv(
exercise_date, step_in_date, exercise_date_settle, index._yc, sc, True
)
if pv is not None:
return 1e4 * pv / a + spread
else:
if spread is None:
return prot - a * index.fixed_rate * 1e-4
else:
return (spread - index.fixed_rate) * a * 1e-4
class CreditIndex(CreditDefaultSwap):
__slots__ = (
"_indic",
"_version",
"_cumloss",
"index_type",
"series",
"tenor",
"_quote_is_price",
)
def __init__(
self,
index_type=None,
series=None,
tenor=None,
value_date=datetime.date.today(),
notional=10_000_000,
redcode=None,
maturity=None,
):
if all([redcode, maturity]):
r = serenitas_engine.execute(
"SELECT index, series, tenor FROM index_desc "
"WHERE redindexcode=%s AND maturity = %s",
(redcode, maturity),
)
index_type, series, tenor = next(r)
if all([index_type, series, tenor]):
sql_str = (
"SELECT indexfactor, lastdate, maturity, coupon, "
"issue_date, version, cumulativeloss "
"FROM index_desc WHERE index=%s AND series=%s AND tenor = %s "
"ORDER BY lastdate ASC"
)
params = (index_type.upper(), series, tenor)
else:
raise ValueError("Not enough information to load the index.")
try:
df = pd.read_sql_query(
sql_str,
serenitas_engine,
parse_dates=["lastdate", "issue_date"],
params=params,
)
maturity = df.maturity[0]
coupon = df.coupon[0]
if tenor is None:
tenor = df.tenor[0]
index_type = index_type.upper() if index_type else df.loc[0, "index"]
series = series if series else df.series.iat[0]
df.loc[df.lastdate.isnull(), "lastdate"] = maturity
except DataError as e:
print(e)
return None
else:
recovery = 0.3 if index_type == "HY" else 0.4
super().__init__(
previous_twentieth(value_date),
maturity,
recovery,
coupon,
notional,
df.issue_date[0],
)
self._quote_is_price = index_type == "HY"
self._indic = tuple(
(ld, factor / 100, cumloss, version)
for ld, factor, cumloss, version in (
df[
["lastdate", "indexfactor", "cumulativeloss", "version"]
].itertuples(index=False)
)
)
self.index_type = index_type
self.series = series
self.tenor = tenor
tenor = tenor.upper()
if tenor.endswith("R"):
tenor = tenor[:-1]
if index_type in ("IG", "HY"):
self.name = "CDX {} CDSI S{} {}".format(index_type, series, tenor)
elif index_type == "EU":
self.name = f"ITRX EUR CDSI S{series} {tenor}"
elif index_type == "XO":
self.name = f"ITRX XOVER CDSI S{series} {tenor}"
if index_type in ("IG", "HY"):
self.currency = "USD"
else:
self.currency = "EUR"
self.value_date = value_date
@classmethod
def from_tradeid(cls, trade_id):
r = dawn_engine.execute(
"""
SELECT index, series, tenor, trade_date, notional, security_desc,
protection, upfront
FROM cds
LEFT JOIN index_desc
ON security_id = redindexcode AND cds.maturity = index_desc.maturity
WHERE id=%s""",
(trade_id,),
)
rec = r.fetchone()
if rec is None:
raise ValueError(f"No index trade for id: {trade_id}")
instance = cls(rec.index, rec.series, rec.tenor, rec.trade_date, rec.notional)
instance.name = rec.security_desc
instance.direction = rec.protection
instance.value_date = rec.trade_date
instance.pv = rec.upfront
instance.reset_pv()
return instance
@property
def hy_equiv(self):
try:
ontr = analytics._ontr
except AttributeError:
return float("nan")
risk = self.notional * self.risky_annuity / ontr.risky_annuity
if self.index_type != "HY":
risk *= analytics._beta[self.index_type]
return risk
@property
def ref(self):
if self._quote_is_price:
return self.price
else:
return self.spread
@ref.setter
def ref(self, val):
if self._quote_is_price:
self.price = val
else:
self.spread = val
def mark(self, **kwargs):
if "ref" in kwargs:
self.ref = kwargs["ref"]
return
if self.value_date == datetime.date.today():
with init_bbg_session(BBG_IP) as session:
security = self.name + " Corp"
field = "PX_LAST"
ref_data = retrieve_data(session, [security], field)
self.ref = ref_data[security][field]
else:
run = serenitas_engine.execute(
"""SELECT * FROM index_quotes
WHERE index=%s AND series=%s AND tenor=%s AND date=%s""",
(self.index_type, self.series, self.tenor, self.value_date),
)
rec = run.fetchone()
self.spread = rec.closespread
value_date = property(CreditDefaultSwap.value_date.__get__)
@value_date.setter
def value_date(self, d):
CreditDefaultSwap.value_date.__set__(self, d)
for lastdate, factor, cumloss, version in self._indic:
if lastdate >= self.value_date:
self._factor = factor
self._version = version
self._cumloss = cumloss
break
else:
self._factor = 1.0
self._version = 1
@property
def factor(self):
return self._factor
@property
def version(self):
return self._version
@property
def cumloss(self):
return self._cumloss
def __repr__(self):
if not self.spread:
raise ValueError("Market spread is missing!")
if self.days_accrued > 1:
accrued_str = "Accrued ({} Days)".format(self.days_accrued)
else:
accrued_str = "Accrued ({} Day)".format(self.days_accrued)
s = [
"{:<20}\tNotional {:>5.2f}MM {}\tFactor {:>28.5f}".format(
"Buy Protection" if self.notional > 0.0 else "Sell Protection",
abs(self.notional) / 1_000_000,
self.currency,
self._factor,
),
"{:<20}\t{:>15}".format("CDS Index", colored(self.name, attrs=["bold"])),
"",
]
rows = [
["Trd Sprd (bp)", self.spread, "Coupon (bp)", self.fixed_rate],
["1st Accr Start", self.issue_date, "Payment Freq", "Quarterly"],
["Maturity Date", self.end_date, "Rec Rate", self.recovery],
["Bus Day Adj", "Following", "DayCount", "ACT/360"],
]
format_strings = [
[None, "{:.2f}", None, "{:.0f}"],
[None, "{:%m/%d/%y}", None, None],
[None, "{:%m/%d/%y}", None, None],
[None, None, None, None],
]
s += build_table(rows, format_strings, "{:<20}{:>19}\t\t{:<20}{:>15}")
s += ["", colored("Calculator", attrs=["bold"])]
rows = [
["Valuation Date", self.value_date],
["Cash Settled On", self._cash_settle_date],
]
format_strings = [[None, "{:%m/%d/%y}"], [None, "{:%m/%d/%y}"]]
s += build_table(rows, format_strings, "{:<20}\t{:>15}")
s += [""]
rows = [
["Price", self.price, "Spread DV01", self.DV01],
["Principal", self.clean_pv, "IR DV01", self.IRDV01],
[accrued_str, self.accrued, "Rec Risk (1%)", self.rec_risk],
["Cash Amount", self.pv, "Def Exposure", self.jump_to_default],
]
format_strings = [
[None, "{:.8f}", None, "{:,.2f}"],
[None, "{:,.0f}", None, "{:,.2f}"],
[None, "{:,.0f}", None, "{:,.2f}"],
[None, "{:,.0f}", None, "{:,.0f}"],
]
s += build_table(rows, format_strings, "{:<20}{:>19}\t\t{:<20}{:>15}")
return "\n".join(s)
class ForwardIndex:
__slots__ = (
"index",
"forward_date",
"exercise_date_settle",
"df",
"_forward_annuity",
"_forward_pv",
"_forward_spread",
"__weakref__",
)
def __init__(self, index, forward_date, observer=True):
self.index = index
if isinstance(forward_date, pd.Timestamp):
self.forward_date = forward_date.date()
else:
self.forward_date = forward_date
self.exercise_date_settle = pd.Timestamp(forward_date) + 3 * BDay()
self._update()
if observer:
self.index.observe(self)
@classmethod
def from_name(
cls,
index_type,
series,
tenor,
forward_date,
value_date=datetime.date.today(),
notional=10e6,
):
index = CreditIndex(index_type, series, tenor, value_date, notional)
return cls(index, forward_date)
@property
def forward_annuity(self):
return self._forward_annuity
@property
def forward_pv(self):
return self._forward_pv
@property
def forward_spread(self):
return self._forward_spread * 1e4
@property
def ref(self):
return self.index.ref
@ref.setter
def ref(self, val):
self.index.ref = val
def __hash__(self):
return hash(tuple(getattr(self, k) for k in ForwardIndex.__slots__[:-1]))
def _update(self, *args):
self.df = self.index._yc.discount_factor(self.exercise_date_settle)
if self.index.value_date > self.forward_date:
raise ValueError(
f"Option expired: value_date {self.index.value_date}"
f" is greater than forward_date: {self.forward_date}"
)
if self.index._sc is not None:
step_in_date = self.forward_date + datetime.timedelta(days=1)
a = self.index._fee_leg.pv(
self.index.value_date,
step_in_date,
self.index.value_date,
self.index._yc,
self.index._sc,
False,
)
Delta = self.index._fee_leg.accrued(step_in_date)
q = self.index._sc.survival_probability(self.forward_date)
self._forward_annuity = a - Delta * self.df * q
self._forward_pv = (
self._forward_annuity
* (self.index.spread - self.index.fixed_rate)
* 1e-4
)
fep = (1 - self.index.recovery) * (1 - q)
self._forward_pv = self._forward_pv / self.df + fep
self._forward_spread = (
self.index._spread + fep * self.df / self._forward_annuity
)
else:
self._forward_annuity, self._forward_pv, self._forward_spread = (
None,
None,
None,
)
|