aboutsummaryrefslogtreecommitdiffstats
path: root/python/analytics/index.py
blob: 9d6e289aa055344cea9614b930148495cc5f8ba6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
from __future__ import division
import array
import datetime
import math
import numpy as np
import pandas as pd
import warnings

from dateutil.relativedelta import relativedelta
from pyisda.legs import ContingentLeg, FeeLeg
from quantlib.settings import Settings
from quantlib.time.api import Date, Actual365Fixed
from termcolor import colored
from pandas.tseries.offsets import BDay
from db import dbengine
from sqlalchemy import exc
from pyisda.curve import SpreadCurve
from .utils import previous_twentieth, build_table
from yieldcurve import YC, ql_to_jp, roll_yc, rate_helpers
from bbg_helpers import BBG_IP, retrieve_data, init_bbg_session

engine  = dbengine('serenitasdb')

def g(index, spread, exercise_date, forward_yc=None, pv=0.):
    """computes the strike clean price using the expected forward yield curve. """
    if forward_yc is None:
        forward_yc = index._yc
    step_in_date = exercise_date + datetime.timedelta(days=1)
    exercise_date_settle = pd.Timestamp(exercise_date) + 3* BDay()
    rates = array.array('d', [spread * 1e-4])
    sc = SpreadCurve(exercise_date, forward_yc, index.start_date,
                     step_in_date, exercise_date_settle,
                     [index.end_date], rates, array.array('d',[pv]),
                     array.array('d', [index.recovery]))
    a = index._fee_leg.pv(exercise_date, step_in_date, exercise_date_settle,
                           forward_yc, sc, True)
    if pv != 0.:
        return 1e4 * pv / a + spread
    else:
        return (spread - index.fixed_rate) * a * 1e-4

def _key_from_index(index):
    _, index_type, _, series, tenor = index.name.split()
    series = int(series[1:])
    tenor = tenor.lower() + 'r'
    return index_type, series, tenor

class Index(object):
    """ minimal class to represent a credit index """
    __slots__ = ['fixed_rate', 'notional', '_start_date', '_end_date',
                 'recovery', 'factor', '_fee_leg', '_default_leg',
                 '_trade_date', '_yc', '_sc', '_risky_annuity', '_spread',
                 '_price', 'name', 'issue_date', '_quote_is_price',
                 '_direction', 'currency', '_step_in_date', '_accrued',
                 '_value_date', '_dl_pv', '_pv', '_clean_pv',
                 '_original_clean_pv', '_original_trade_date', '_observed']
    def __init__(self, start_date, end_date, recovery, fixed_rate,
                 notional = 10e6, quote_is_price=False, issue_date=None):
        """
        start_date : :class:`datetime.date`
            index start_date (Could be issue date, or last imm date)
        end_date : :class:`datetime.date`
            index last date
        recovery :
            recovery rate (between 0 and 1)
        fixed_rate :
            fixed coupon (in bps)
        """
        self.fixed_rate = fixed_rate
        self.notional = notional
        self._start_date = start_date
        self._end_date = end_date
        self.recovery = recovery
        self.factor = 1

        self._fee_leg = FeeLeg(self._start_date, end_date, True, 1., 1.)
        self._default_leg = ContingentLeg(self._start_date, end_date, True)
        self._trade_date = None
        self._yc, self._sc = None, None
        self._risky_annuity = None
        self._spread, self._price = None, None
        self.name = None
        self.issue_date = issue_date
        self._quote_is_price = quote_is_price
        self._direction = -1.
        self.currency = None
        self._step_in_date, self._value_date = None, None
        self._accrued = None
        self._dl_pv, self._pv, self._clean_pv = None, None, None
        self._original_clean_pv, self._original_trade_date = None, None
        self._observed = []


    def __hash__(self):
        return hash(tuple(getattr(self, k) for k in self.__slots__ if k != '_observed'))

    @property
    def start_date(self):
        return self._start_date

    @property
    def end_date(self):
        return self._end_date

    @start_date.setter
    def start_date(self, d):
        self._fee_leg = FeeLeg(d, self.end_date, True, 1., 1.)
        self._default_leg = ContingentLeg(d, self.end_date, True)
        self._start_date = d

    @end_date.setter
    def end_date(self, d):
        self._fee_leg = FeeLeg(self.start_date, d, True, 1., 1.)
        self._default_leg = ContingentLeg(self.start_date, d, True)
        self._end_date = d

    @property
    def spread(self):
        if self._spread is not None:
            return self._spread * 1e4
        else:
            return None
    @property
    def direction(self):
        if self._direction == -1.:
            return "Buyer"
        else:
            return "Seller"

    @direction.setter
    def direction(self, d):
        if d == "Buyer":
            self._direction = -1.
        elif d == "Seller":
            self._direction = 1.
        else:
            raise ValueError("Direction needs to be either 'Buyer' or 'Seller'")

    def _update(self):
        self._sc = SpreadCurve(self.trade_date, self._yc, self.start_date,
                               self._step_in_date, self._value_date,
                               [self.end_date], np.array([self._spread]), np.zeros(1),
                               np.array([self.recovery]))

        self._risky_annuity = self._fee_leg.pv(self.trade_date, self._step_in_date,
                                               self._value_date, self._yc,
                                               self._sc, False)
        self._dl_pv = self._default_leg.pv(
            self.trade_date, self._step_in_date, self._value_date,
            self._yc, self._sc, self.recovery)
        self._pv = self._dl_pv - self._risky_annuity * self.fixed_rate * 1e-4
        self._clean_pv = self._pv + self._accrued * self.fixed_rate * 1e-4
        self._price = 100 * (1 - self._clean_pv)

    @spread.setter
    def spread(self, s):
        """ s: spread in bps """
        if self.spread is None or s != self.spread:
            self._spread = s * 1e-4
            self._update()
            self.notify()

    @property
    def flat_hazard(self):
        sc_data = self._sc.inspect()['data']
        ## conversion to continuous compounding
        return sc_data[0][1]

    @property
    def pv(self):
        return - self._direction * self.notional * self.factor * self._pv

    @pv.setter
    def pv(self, val):
        self._pv = val / (self.notional * self.factor) * self._direction
        self._clean_pv = self._pv + self._accrued * self.fixed_rate * 1e-4
        self.price = 100 * (1 - self._clean_pv)

    @property
    def accrued(self):
        return self._direction * self.notional * self.factor * self._accrued * \
            self.fixed_rate * 1e-4

    @property
    def days_accrued(self):
        return int(self._accrued * 360)

    @property
    def clean_pv(self):
        return - self._direction * self.notional * self.factor * self._clean_pv

    @property
    def price(self):
        return self._price

    @price.setter
    def price(self, val):
        if self._price is None or math.fabs(val-self._price) > 1e-6:
            self._clean_pv = (100 - val) / 100
            self._sc = SpreadCurve(
                self.trade_date, self._yc, self.start_date,
                self._step_in_date, self._value_date,
                [self.end_date], array.array('d',[self.fixed_rate*1e-4]),
                array.array('d', [self._clean_pv]),
                array.array('d', [self.recovery]))
            self._risky_annuity = self._fee_leg.pv(
                self.trade_date, self._step_in_date, self._value_date,
                self._yc, self._sc, False)
            self._dl_pv = self._default_leg.pv(
                self.trade_date, self._step_in_date, self._value_date,
                self._yc, self._sc, self.recovery)
            self._pv = self._clean_pv - self._accrued * self.fixed_rate * 1e-4
            self._spread = self._clean_pv / (self._risky_annuity - self._accrued) \
                           + self.fixed_rate * 1e-4
            self._price = val
            self.notify()

    @property
    def ref(self):
        if self._quote_is_price:
            return self.price
        else:
            return self.spread

    @ref.setter
    def ref(self, val):
        if self._quote_is_price:
            self.price = val
        else:
            self.spread = val

    @property
    def DV01(self):
        old_pv, old_spread = self.pv, self.spread
        self.spread += 1
        dv01 = self.pv - old_pv
        self.spread = old_spread
        return dv01

    @property
    def theta(self):
        old_pv, old_trade_date = self.clean_pv, self.trade_date
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            self.trade_date = self.trade_date + relativedelta(days=1)
        carry = self.notional * self._direction * self.fixed_rate * 1e-4/360
        roll_down = self.clean_pv - old_pv
        self.trade_date = old_trade_date
        return carry + roll_down

    @property
    def IRDV01(self):
        old_pv, old_yc = self.pv, self._yc
        # for rh in self._helpers:
        #     rh.quote += 1e-4
        # self._yc = ql_to_jp(self._ql_yc)
        helpers = rate_helpers(self.currency)
        for rh in helpers:
            rh.quote += 1e-4
        ql_yc = YC(helpers)
        self._yc = ql_to_jp(ql_yc)
        self._update() ## to force recomputation
        new_pv = self.pv
        # for r in self._helpers:
        #     r.quote -= 1e-4
        self._yc = old_yc
        self._update()
        return new_pv - old_pv

    @property
    def rec_risk(self):
        old_pv, old_recovery = self.pv, self.recovery
        self.recovery = old_recovery - 0.01
        self._update()
        pv_minus = self.pv
        self.recovery = old_recovery + 0.01
        self._update()
        pv_plus = self.pv
        self.recovery = old_recovery
        self._update()
        return (pv_plus - pv_minus) / 2

    @property
    def jump_to_default(self):
        return self.notional * self.factor * self._direction * \
            (self.recovery + self._clean_pv - 1)

    @property
    def risky_annuity(self):
        return self._risky_annuity - self._accrued

    @property
    def trade_date(self):
        if self._trade_date is None:
            raise AttributeError('Please set trade_date first')
        else:
            return self._trade_date

    @trade_date.setter
    def trade_date(self, d):
        settings = Settings()
        settings.evaluation_date = Date.from_datetime(d)
        self.start_date = previous_twentieth(d)
        # self._helpers = rate_helpers(self.currency)
        # self._ql_yc = YC(self._helpers)
        # self._yc = ql_to_jp(self._ql_yc)
        ql_yc = YC(currency = self.currency)
        self._yc = ql_to_jp(ql_yc)
        # use the rolled forward curve if we price something in the future
        if self._yc.base_date < d:
            self._yc = self._yc.expected_forward_curve(d)
        self._trade_date = d
        self._step_in_date = self.trade_date + datetime.timedelta(days=1)
        self._accrued = self._fee_leg.accrued(self._step_in_date)
        self._value_date = pd.Timestamp(self._trade_date) + 3* BDay()
        if self._spread is not None:
            self._update()
        self.notify()

    def reset_pv(self):
        self._original_clean_pv = self._clean_pv
        self._original_trade_date = self._trade_date

    @property
    def pnl(self):
        if self._original_clean_pv is None:
            raise ValueError("original pv not set")
        else:
            ## TODO: handle factor change
            days_accrued = (self.trade_date - self._original_trade_date).days / 360
            return - self._direction * self.notional * self.factor * \
                (self._clean_pv - self._original_clean_pv -
                 days_accrued * self.fixed_rate * 1e-4)

    def notify(self):
        for obj in self._observed:
            obj._update()

    def observe(self, obj):
        self._observed.append(obj)

    def mark(self):
        index_type, series, tenor = _key_from_index(self)
        if self.trade_date == datetime.date.today():
            with init_bbg_session(BBG_IP) as session:
                security = self.name + " Corp"
                field = "PX_LAST"
                ref_data = retrieve_data(session, security, field)
            self.ref = ref_data[security][field]
        else:
            run = engine.execute("""SELECT * FROM index_quotes
            WHERE index=%s AND series=%s AND tenor=%s AND date=%s""",
                                 (index_type, series, tenor, self.trade_date))
            rec = run.fetchone()
            self.spread = rec.closespread

    @classmethod
    def from_name(cls, index=None, series=None, tenor=None, trade_date=datetime.date.today(),
                  notional=10_000_000, redcode=None, maturity=None):
        if all([index, series, tenor]):
            sql_str = "SELECT indexfactor, lastdate, maturity, coupon, issue_date " \
                      "FROM index_desc WHERE index=%s AND series=%s AND tenor = %s " \
                      "ORDER BY lastdate ASC"
            params = (index.upper(), series, tenor)
        elif all([redcode, maturity]):
            sql_str = "SELECT index, series, indexfactor, lastdate, maturity, " \
                      "coupon, issue_date, tenor " \
                      "FROM index_desc WHERE redindexcode=%s AND maturity=%s"
            params = (redcode, maturity)
        else:
            raise ValueError("Not enough information to load the index.")
        try:
            df = pd.read_sql_query(sql_str,
                                   engine, parse_dates=['lastdate', 'issue_date'],
                                   params=params)
            maturity = df.maturity[0]
            coupon = df.coupon[0]
            if tenor is None:
                tenor = df.tenor[0]
            index_type = index.upper() if index else df.loc[0,'index']
            series = series if series else df.series[0]
            df.loc[df.lastdate.isnull(),'lastdate'] = maturity
            factor = df.loc[df.lastdate >= pd.Timestamp(trade_date),
                            'indexfactor'].iat[0]/100
        except exc.DataError as e:
            print(e)
            return None
        else:
            recovery = 0.4 if index_type == "IG" else 0.3
            instance = cls(trade_date, maturity, recovery, coupon, notional,
                           index_type=="HY", df.issue_date[0])
            instance.factor = factor
            instance.direction = "Buyer"
            tenor = tenor.upper()
            if tenor.endswith("R"):
                tenor = tenor[:-1]
            instance.name = "CDX {} CDSI S{} {}".format(index_type,
                                                        series,
                                                        tenor)
            if index_type in ["IG", "HY"]:
                instance.currency = "USD"
            else:
                instance.currency = "EUR"
            instance.trade_date = trade_date
            return instance

    @classmethod
    def from_tradeid(cls, trade_id):
        engine  = dbengine('dawndb')
        r = engine.execute("""
        SELECT * FROM cds
        LEFT JOIN index_desc
        ON security_id = redindexcode AND cds.maturity = index_desc.maturity
        WHERE id=%s""", (trade_id,))
        rec = r.fetchone()
        recovery = 0.4 if "IG" in rec.security_desc else 0.3
        instance = cls(rec.trade_date, rec.maturity, recovery, rec.fixed_rate * 100,
                       rec.notional, recovery==0.3, rec.issue_date)

        instance.name = rec.security_desc
        instance.currency = rec.currency
        instance.direction = rec.protection
        instance.trade_date = rec.trade_date
        instance.pv = rec.upfront
        instance._original_clean_pv = instance._clean_pv
        instance._original_trade_date = rec.trade_date
        return instance

    def __repr__(self):
        if not self.spread:
            raise ValueError("Market spread is missing!")
        if self.days_accrued > 1:
            accrued_str = "Accrued ({} Days)".format(self.days_accrued)
        else:
            accrued_str = "Accrued ({} Day)".format(self.days_accrued)

        s = ["{:<20}\tNotional {:>5}MM {}\tFactor {:>28}".format("Buy Protection"\
                                                                 if self._direction == -1 \
                                                                 else "Sell Protection",
                                                                 self.notional/1_000_000,
                                                                 self.currency,
                                                                 self.factor),
             "{:<20}\t{:>15}".format("CDS Index", colored(self.name, attrs=['bold'])),
             ""]
        rows = [["Trd Sprd (bp)", self.spread, "Coupon (bp)", self.fixed_rate],
                ["1st Accr Start", self.issue_date, "Payment Freq", "Quarterly"],
                ["Maturity Date", self.end_date, "Rec Rate", self.recovery],
                ["Bus Day Adj", "Following", "DayCount", "ACT/360"]]
        format_strings = [[None, '{:.2f}', None, '{:.0f}'],
                          [None, '{:%m/%d/%y}', None, None],
                          [None, '{:%m/%d/%y}', None, None],
                          [None, None, None, None]]
        s += build_table(rows, format_strings, "{:<20}{:>19}\t\t{:<20}{:>15}")
        s += ["",
              colored("Calculator", attrs = ['bold'])]
        rows = [["Valuation Date", self.trade_date],
                ["Cash Settled On", self._value_date]]
        format_strings = [[None, '{:%m/%d/%y}'],
                          [None, '{:%m/%d/%y}']]
        s += build_table(rows, format_strings, "{:<20}\t{:>15}")
        s += [""]
        rows = [["Price", self.price, "Spread DV01", self.DV01],
                ["Principal", self.clean_pv, "IR DV01", self.IRDV01],
                [accrued_str, self.accrued, "Rec Risk (1%)", self.rec_risk],
                ["Cash Amount", self.pv, "Def Exposure", self.jump_to_default]]
        format_strings = [[None, '{:.8f}', None, '{:,.2f}'],
                          [None, '{:,.0f}', None, '{:,.2f}'],
                          [None, '{:,.0f}', None, '{:,.2f}'],
                          [None, '{:,.0f}', None, '{:,.0f}']]
        s += build_table(rows, format_strings, "{:<20}{:>19}\t\t{:<20}{:>15}")
        return "\n".join(s)


class ForwardIndex(object):
    __slots__ = ['index', 'forward_date', 'exercise_date_settle', 'df',
                 '_forward_annuity', '_forward_pv', '_forward_spread',
                 '__weakref__']
    def __init__(self, index, forward_date):
        self.index = index
        self.forward_date = forward_date
        self.exercise_date_settle = pd.Timestamp(forward_date) + 3* BDay()
        self.df = index._yc.discount_factor(self.exercise_date_settle)
        self._update()
        self.index.observe(self)

    @classmethod
    def from_name(cls, index_type, series, tenor, forward_date,
                  trade_date=datetime.date.today(), notional=10e6):
        index = Index.from_name(index_type, series, tenor, trade_date, notional)
        return cls(index, forward_date)

    @property
    def forward_annuity(self):
        return self._forward_annuity

    @property
    def forward_pv(self):
        return self._forward_pv

    @property
    def forward_spread(self):
        return self._forward_spread * 1e4

    @property
    def ref(self):
        return self.index.ref

    @ref.setter
    def ref(self, val):
        self.index.ref = val

    def __hash__(self):
        return hash(tuple(getattr(self, k) for k in ForwardIndex.__slots__ if k != '__weakref__'))

    def _update(self, *args):
        if self.index.trade_date > self.forward_date:
            return
        if self.index._sc is not None:
            step_in_date = self.forward_date + datetime.timedelta(days=1)
            a = self.index._fee_leg.pv(self.index.trade_date, step_in_date,
                                       self.index.trade_date, self.index._yc, self.index._sc, False)
            Delta = self.index._fee_leg.accrued(step_in_date)
            q = self.index._sc.survival_probability(self.forward_date)
            self._forward_annuity = a - Delta * self.df * q
            self._forward_pv = self._forward_annuity * (self.index.spread - self.index.fixed_rate) * 1e-4
            fep = (1 - self.index.recovery) * (1 - q)
            self._forward_pv =  self._forward_pv / self.df + fep
            self._forward_spread = self.index._spread + fep * self.df / self._forward_annuity
        else:
            self._forward_annuity, self._forward_pv, self._forward_spread = None, None, None