1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
import array
import datetime
import pandas as pd
from .credit_default_swap import CreditDefaultSwap
from .db import _engine, dbengine, DataError
from bbg_helpers import BBG_IP, retrieve_data, init_bbg_session
from pandas.tseries.offsets import BDay
from pyisda.curve import SpreadCurve
def g(index, spread, exercise_date, pv=None):
"""computes the strike clean price using the expected forward yield curve. """
step_in_date = exercise_date + datetime.timedelta(days=1)
exercise_date_settle = pd.Timestamp(exercise_date) + 3 * BDay()
if spread is None and index._sc is not None:
sc = index._sc
prot = index._default_leg.pv(exercise_date, step_in_date,
exercise_date_settle, index._yc,
index._sc, index.recovery)
else:
rates = array.array('d', [spread * 1e-4])
upfront = 0. if pv is None else pv
sc = SpreadCurve(exercise_date, index._yc, index.start_date,
step_in_date, exercise_date_settle,
[index.end_date], rates, array.array('d', [upfront]),
array.array('d', [index.recovery]))
a = index._fee_leg.pv(exercise_date, step_in_date, exercise_date_settle,
index._yc, sc, True)
if pv is not None:
return 1e4 * pv / a + spread
else:
if spread is None:
return prot - a * index.fixed_rate*1e-4
else:
return (spread - index.fixed_rate) * a * 1e-4
class CreditIndex(CreditDefaultSwap):
__slots__ = ('_indic', '_version', 'index_type', 'series', 'tenor')
def __init__(self, index_type=None, series=None, tenor=None,
value_date=datetime.date.today(), notional=10_000_000,
redcode=None, maturity=None):
if all([index_type, series, tenor]):
sql_str = "SELECT indexfactor, lastdate, maturity, coupon, " \
"issue_date, version " \
"FROM index_desc WHERE index=%s AND series=%s AND tenor = %s " \
"ORDER BY lastdate ASC"
params = (index_type.upper(), series, tenor)
elif all([redcode, maturity]):
sql_str = "SELECT index, series, indexfactor, lastdate, maturity, " \
"coupon, issue_date, tenor, version " \
"FROM index_desc WHERE redindexcode=%s AND maturity=%s"
params = (redcode, maturity)
else:
raise ValueError("Not enough information to load the index.")
try:
df = pd.read_sql_query(sql_str,
_engine,
parse_dates=['lastdate', 'issue_date'],
params=params)
maturity = df.maturity[0]
coupon = df.coupon[0]
if tenor is None:
tenor = df.tenor[0]
index_type = index_type.upper() if index_type else df.loc[0, 'index']
series = series if series else df.series.iat[0]
df.loc[df.lastdate.isnull(), 'lastdate'] = maturity
except DataError as e:
print(e)
return None
else:
recovery = 0.4 if index_type in ['IG', 'EU'] else 0.3
super().__init__(value_date, maturity, recovery, coupon, notional,
df.issue_date[0])
self._quote_is_price = index_type == "HY"
self._indic = tuple((ld.date(), factor / 100, version) for ld, factor, version in \
df[['lastdate', 'indexfactor', 'version']].itertuples(index=False))
self.index_type = index_type
self.series = series
self.tenor = tenor
tenor = tenor.upper()
if tenor.endswith("R"):
tenor = tenor[:-1]
self.name = "CDX {} CDSI S{} {}".format(index_type,
series,
tenor)
if index_type in ["IG", "HY"]:
self.currency = "USD"
else:
self.currency = "EUR"
self.value_date = value_date
@classmethod
def from_tradeid(cls, trade_id):
engine = dbengine('dawndb')
r = engine.execute("""
SELECT * FROM cds
LEFT JOIN index_desc
ON security_id = redindexcode AND cds.maturity = index_desc.maturity
WHERE id=%s""", (trade_id,))
rec = r.fetchone()
instance = cls(rec.index, rec.series, rec.tenor, rec.trade_date, rec.notional)
instance.name = rec.security_desc
instance.direction = rec.protection
instance.value_date = rec.trade_date
instance.pv = rec.upfront
instance.reset_pv()
return instance
@property
def ref(self):
if self._quote_is_price:
return self.price
else:
return self.spread
@ref.setter
def ref(self, val):
if self._quote_is_price:
self.price = val
else:
self.spread = val
def mark(self, **args):
if self.value_date == datetime.date.today():
with init_bbg_session(BBG_IP) as session:
security = self.name + " Corp"
field = "PX_LAST"
ref_data = retrieve_data(session, [security], field)
self.ref = ref_data[security][field]
else:
run = _engine.execute("""SELECT * FROM index_quotes
WHERE index=%s AND series=%s AND tenor=%s AND date=%s""",
(self.index_type, self.series, self.tenor, self.value_date))
rec = run.fetchone()
self.spread = rec.closespread
value_date = property(CreditDefaultSwap.value_date.__get__)
@value_date.setter
def value_date(self, d):
CreditDefaultSwap.value_date.__set__(self, d)
for lastdate, factor, version in self._indic:
if lastdate >= self.value_date:
self._factor = factor
self._version = version
else:
self._factor = 1.
self._version = None
@property
def factor(self):
return self._factor
@property
def version(self):
return self._version
class ForwardIndex():
__slots__ = ('index', 'forward_date', 'exercise_date_settle', 'df',
'_forward_annuity', '_forward_pv', '_forward_spread',
'__weakref__')
def __init__(self, index, forward_date, observer=True):
self.index = index
if isinstance(forward_date, pd.Timestamp):
self.forward_date = forward_date.date()
else:
self.forward_date = forward_date
self.exercise_date_settle = pd.Timestamp(forward_date) + 3 * BDay()
self.df = index._yc.discount_factor(self.exercise_date_settle)
self._update()
if observer:
self.index.observe(self)
@classmethod
def from_name(cls, index_type, series, tenor, forward_date,
value_date=datetime.date.today(), notional=10e6):
index = Index.from_name(index_type, series, tenor, value_date, notional)
return cls(index, forward_date)
@property
def forward_annuity(self):
return self._forward_annuity
@property
def forward_pv(self):
return self._forward_pv
@property
def forward_spread(self):
return self._forward_spread * 1e4
@property
def ref(self):
return self.index.ref
@ref.setter
def ref(self, val):
self.index.ref = val
def __hash__(self):
return hash(tuple(getattr(self, k) for k in ForwardIndex.__slots__ if k != '__weakref__'))
def _update(self, *args):
if self.index.value_date > self.forward_date:
raise ValueError("Option expired")
if self.index._sc is not None:
step_in_date = self.forward_date + datetime.timedelta(days=1)
a = self.index._fee_leg.pv(self.index.value_date, step_in_date,
self.index.value_date, self.index._yc, self.index._sc, False)
Delta = self.index._fee_leg.accrued(step_in_date)
q = self.index._sc.survival_probability(self.forward_date)
self._forward_annuity = a - Delta * self.df * q
self._forward_pv = self._forward_annuity * (self.index.spread - self.index.fixed_rate) * 1e-4
fep = (1 - self.index.recovery) * (1 - q)
self._forward_pv = self._forward_pv / self.df + fep
self._forward_spread = self.index._spread + fep * self.df / self._forward_annuity
else:
self._forward_annuity, self._forward_pv, self._forward_spread = None, None, None
|