aboutsummaryrefslogtreecommitdiffstats
path: root/python/analytics/index.py
blob: 0541c7277cbec40ce7204b20f4ac66a298e1563d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import array
import datetime
import pandas as pd

from .credit_default_swap import CreditDefaultSwap
from .db import _engine, dbengine, DataError
from bbg_helpers import BBG_IP, retrieve_data, init_bbg_session
from pandas.tseries.offsets import BDay
from pyisda.curve import SpreadCurve


def g(index, spread, exercise_date, pv=None):
    """computes the strike clean price using the expected forward yield curve. """
    step_in_date = exercise_date + datetime.timedelta(days=1)
    exercise_date_settle = pd.Timestamp(exercise_date) + 3 * BDay()
    if spread is None and index._sc is not None:
        sc = index._sc
        prot = index._default_leg.pv(exercise_date, step_in_date,
                                     exercise_date_settle, index._yc,
                                     index._sc, index.recovery)
    else:
        rates = array.array('d', [spread * 1e-4])
        upfront = 0. if pv is None else pv
        sc = SpreadCurve(exercise_date, index._yc, index.start_date,
                         step_in_date, exercise_date_settle,
                         [index.end_date], rates, array.array('d', [upfront]),
                         array.array('d', [index.recovery]))
    a = index._fee_leg.pv(exercise_date, step_in_date, exercise_date_settle,
                          index._yc, sc, True)

    if pv is not None:
        return 1e4 * pv / a + spread
    else:
        if spread is None:
            return prot - a * index.fixed_rate*1e-4
        else:
            return (spread - index.fixed_rate) * a * 1e-4


class CreditIndex(CreditDefaultSwap):
    __slots__ = ('_indic', '_version', 'index_type', 'series', 'tenor')

    def __init__(self, index_type=None, series=None, tenor=None,
                 value_date=datetime.date.today(), notional=10_000_000,
                 redcode=None, maturity=None):
        if all([index_type, series, tenor]):
            sql_str = "SELECT indexfactor, lastdate, maturity, coupon, " \
                      "issue_date, version " \
                      "FROM index_desc WHERE index=%s AND series=%s AND tenor = %s " \
                      "ORDER BY lastdate ASC"
            params = (index_type.upper(), series, tenor)
        elif all([redcode, maturity]):
            sql_str = "SELECT index, series, indexfactor, lastdate, maturity, " \
                      "coupon, issue_date, tenor, version " \
                      "FROM index_desc WHERE redindexcode=%s AND maturity=%s"
            params = (redcode, maturity)
        else:
            raise ValueError("Not enough information to load the index.")
        try:
            df = pd.read_sql_query(sql_str,
                                   _engine,
                                   parse_dates=['lastdate', 'issue_date'],
                                   params=params)
            maturity = df.maturity[0]
            coupon = df.coupon[0]
            if tenor is None:
                tenor = df.tenor[0]
            index_type = index_type.upper() if index_type else df.loc[0, 'index']
            series = series if series else df.series.iat[0]
            df.loc[df.lastdate.isnull(), 'lastdate'] = maturity
        except DataError as e:
            print(e)
            return None
        else:
            recovery = 0.4 if index_type in ['IG', 'EU'] else 0.3
            super().__init__(value_date, maturity, recovery, coupon, notional,
                             df.issue_date[0])
            self._quote_is_price = index_type == "HY"
            self._indic = tuple((ld.date(), factor / 100, version) for ld, factor, version in \
                                df[['lastdate', 'indexfactor', 'version']].itertuples(index=False))
            self.index_type = index_type
            self.series = series
            self.tenor = tenor

            tenor = tenor.upper()
            if tenor.endswith("R"):
                tenor = tenor[:-1]
            self.name = "CDX {} CDSI S{} {}".format(index_type,
                                                    series,
                                                    tenor)
            if index_type in ["IG", "HY"]:
                self.currency = "USD"
            else:
                self.currency = "EUR"
            self.value_date = value_date

    @classmethod
    def from_tradeid(cls, trade_id):
        engine = dbengine('dawndb')
        r = engine.execute("""
        SELECT * FROM cds
        LEFT JOIN index_desc
        ON security_id = redindexcode AND cds.maturity = index_desc.maturity
        WHERE id=%s""", (trade_id,))
        rec = r.fetchone()
        instance = cls(rec.index, rec.series, rec.tenor, rec.trade_date, rec.notional)

        instance.name = rec.security_desc
        instance.direction = rec.protection
        instance.value_date = rec.trade_date
        instance.pv = rec.upfront
        instance.reset_pv()
        return instance

    @property
    def ref(self):
        if self._quote_is_price:
            return self.price
        else:
            return self.spread

    @ref.setter
    def ref(self, val):
        if self._quote_is_price:
            self.price = val
        else:
            self.spread = val

    def mark(self, **args):
        if self.value_date == datetime.date.today():
            with init_bbg_session(BBG_IP) as session:
                security = self.name + " Corp"
                field = "PX_LAST"
                ref_data = retrieve_data(session, [security], field)
            self.ref = ref_data[security][field]
        else:
            run = _engine.execute("""SELECT * FROM index_quotes
            WHERE index=%s AND series=%s AND tenor=%s AND date=%s""",
                                  (self.index_type, self.series, self.tenor, self.value_date))
            rec = run.fetchone()
            self.spread = rec.closespread

    value_date = property(CreditDefaultSwap.value_date.__get__)

    @value_date.setter
    def value_date(self, d):
        CreditDefaultSwap.value_date.__set__(self, d)
        for lastdate, factor, version in self._indic:
            if lastdate >= self.value_date:
                self._factor = factor
                self._version = version
        else:
            self._factor = 1.
            self._version = None

    @property
    def factor(self):
        return self._factor

    @property
    def version(self):
        return self._version

class ForwardIndex():
    __slots__ = ('index', 'forward_date', 'exercise_date_settle', 'df',
                 '_forward_annuity', '_forward_pv', '_forward_spread',
                 '__weakref__')
    def __init__(self, index, forward_date, observer=True):
        self.index = index
        if isinstance(forward_date, pd.Timestamp):
            self.forward_date = forward_date.date()
        else:
            self.forward_date = forward_date
        self.exercise_date_settle = pd.Timestamp(forward_date) + 3 * BDay()
        self.df = index._yc.discount_factor(self.exercise_date_settle)
        self._update()
        if observer:
            self.index.observe(self)

    @classmethod
    def from_name(cls, index_type, series, tenor, forward_date,
                  value_date=datetime.date.today(), notional=10e6):
        index = Index.from_name(index_type, series, tenor, value_date, notional)
        return cls(index, forward_date)

    @property
    def forward_annuity(self):
        return self._forward_annuity

    @property
    def forward_pv(self):
        return self._forward_pv

    @property
    def forward_spread(self):
        return self._forward_spread * 1e4

    @property
    def ref(self):
        return self.index.ref

    @ref.setter
    def ref(self, val):
        self.index.ref = val

    def __hash__(self):
        return hash(tuple(getattr(self, k) for k in ForwardIndex.__slots__ if k != '__weakref__'))

    def _update(self, *args):
        if self.index.value_date > self.forward_date:
            raise ValueError("Option expired")
        if self.index._sc is not None:
            step_in_date = self.forward_date + datetime.timedelta(days=1)
            a = self.index._fee_leg.pv(self.index.value_date, step_in_date,
                                       self.index.value_date, self.index._yc, self.index._sc, False)
            Delta = self.index._fee_leg.accrued(step_in_date)
            q = self.index._sc.survival_probability(self.forward_date)
            self._forward_annuity = a - Delta * self.df * q
            self._forward_pv = self._forward_annuity * (self.index.spread - self.index.fixed_rate) * 1e-4
            fep = (1 - self.index.recovery) * (1 - q)
            self._forward_pv = self._forward_pv / self.df + fep
            self._forward_spread = self.index._spread + fep * self.df / self._forward_annuity
        else:
            self._forward_annuity, self._forward_pv, self._forward_spread = None, None, None