aboutsummaryrefslogtreecommitdiffstats
path: root/python/analytics/index.py
blob: ee8aaa2a9b46e0de77246f82ef5259735c7a8c5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
from __future__ import division
import datetime
import math
import numpy as np
import pandas as pd

from pyisda.legs import ContingentLeg, FeeLeg
from quantlib.settings import Settings
from quantlib.time.api import Date, Actual365Fixed
from termcolor import colored
from pandas.tseries.offsets import BDay
from dates import prev_immdate
from db import dbconn
from psycopg2 import DataError
from pyisda.curve import SpreadCurve
from .utils import previous_twentieth
from scipy.optimize import brentq
from yieldcurve import YC, ql_to_jp, roll_yc, rate_helpers

serenitasdb  = dbconn('serenitasdb')

def g(index, spread, exercise_date, forward_yc = None):
    """computes the strike clean price using the expected forward yield curve """
    if forward_yc is None:
        forward_yc = index._yc
    step_in_date = exercise_date + datetime.timedelta(days=1)
    exercise_date_settle = (pd.Timestamp(exercise_date) + 3* BDay()).date()
    sc = SpreadCurve(exercise_date, forward_yc, index.start_date,
                     step_in_date, exercise_date_settle,
                     [index.end_date], np.array([spread * 1e-4]),
                     index.recovery)
    a = index._fee_leg.pv(exercise_date, step_in_date, exercise_date_settle,
                          forward_yc, sc, True)
    return (spread - index.fixed_rate) * a *1e-4

class Index(object):
    """ minimal class to represent a credit index """
    def __init__(self, start_date, end_date, recovery, fixed_rate,
                 notional = 10e6):
        """
        start_date : :class:`datetime.date`
            index start_date (Could be issue date, or last imm date)
        end_date : :class:`datetime.date`
            index last date
        recovery :
            recovery rate (between 0 and 1)
        fixed_rate :
            fixed coupon (in bps)
        """
        self.fixed_rate = fixed_rate
        self.notional = notional
        self._start_date = start_date
        self._end_date = end_date
        self.recovery = recovery

        self._fee_leg = FeeLeg(self._start_date, end_date, True, 1, 1)
        self._default_leg = ContingentLeg(self._start_date, end_date, 1)
        self._trade_date = None
        self._yc = None
        self._sc = None
        self._risky_annuity = None
        self._spread = None
        self._price = None
        self.name = None

    @property
    def start_date(self):
        return self._start_date

    @property
    def end_date(self):
        return self._end_date

    @start_date.setter
    def start_date(self, d):
        self._fee_leg = FeeLeg(d, self.end_date, True, 1, 1)
        self._default_leg = ContingentLeg(d, self.end_date, 1)
        self._start_date = d

    @end_date.setter
    def end_date(self, d):
        self._fee_leg = FeeLeg(self.start_date, d, True, 1, 1)
        self._default_leg = ContingentLeg(self.start_date, d, 1)
        self._end_date = d

    @property
    def spread(self):
        if self._spread is not None:
            return self._spread * 1e4
        else:
            return None

    def _update(self):
        self._sc = SpreadCurve(self.trade_date, self._yc, self.start_date,
                               self._step_in_date, self._value_date,
                               [self.end_date], np.array([self._spread]),
                               self.recovery)
        self._risky_annuity = self._fee_leg.pv(self.trade_date, self._step_in_date,
                                               self._value_date, self._yc,
                                               self._sc, False)
        self._dl_pv = self._default_leg.pv(
            self.trade_date, self._step_in_date, self._value_date,
            self._yc, self._sc, self.recovery)
        self._pv = self._dl_pv - self._risky_annuity * self.fixed_rate * 1e-4
        self._clean_pv = self._pv + self._accrued * self.fixed_rate * 1e-4
        self._price = 100 * (1 - self._clean_pv)

    @spread.setter
    def spread(self, s):
        """ s: spread in bps """
        if self.spread is None or s != self.spread:
            self._spread = s * 1e-4
            self._update()

    @property
    def flat_hazard(self):
        sc_data = self._sc.inspect()['data']
        ## conversion to continuous compounding
        return math.log(1 + sc_data[0][1])

    @property
    def pv(self):
        return self.notional * self._pv

    @property
    def accrued(self):
        return - self.notional * self._accrued * self.fixed_rate * 1e-4

    @property
    def days_accrued(self):
        return int(self._accrued * 360)

    @property
    def clean_pv(self):
        return self.notional * self._clean_pv

    @property
    def price(self):
        return self._price

    @price.setter
    def price(self, val):
        if self._price is None or math.fabs(val-self._price) > 1e-6:
            def handle(x, self, val):
                self._spread = x
                self._update()
                return val - self.price
            eta = 1.2
            a = self.fixed_rate*1e-4 * 0.5
            b = a * eta
            while True:
                if handle(b, self, val) > 0:
                    break
                b *= eta
            self._spread = brentq(handle, a, b, args = (self, val))
            self._update()

    @property
    def DV01(self):
        old_pv = self.pv
        self.spread += 1
        dv01 = self.pv - old_pv
        self.spread -= 1
        return dv01

    @property
    def IRDV01(self):
        old_pv = self.pv
        old_yc = self._yc
        # for rh in self._helpers:
        #     rh.quote += 1e-4
        # self._yc = ql_to_jp(self._ql_yc)
        helpers = rate_helpers(self.currency)
        for rh in helpers:
            rh.quote += 1e-4
        ql_yc = YC(helpers)
        self._yc = ql_to_jp(ql_yc)
        self._update() ## to force recomputation
        new_pv = self.pv
        # for r in self._helpers:
        #     r.quote -= 1e-4
        self._yc = old_yc
        self._update()
        return new_pv - old_pv

    @property
    def rec_risk(self):
        old_pv = self.pv
        old_recovery = self.recovery
        self.recovery = old_recovery - 0.01
        self._update()
        pv_minus = self.pv
        self.recovery = old_recovery + 0.01
        self._update()
        pv_plus = self.pv
        self.recovery = old_recovery
        self._update()
        return (pv_plus - pv_minus)/2

    @property
    def jump_to_default(self):
        return self.notional * (1 - self.recovery) - self.clean_pv

    @property
    def risky_annuity(self):
        return self._risky_annuity - self._accrued

    @property
    def trade_date(self):
        if self._trade_date is None:
            raise AttributeError('Please set trade_date first')
        else:
            return self._trade_date

    @trade_date.setter
    def trade_date(self, d):
        settings = Settings()
        settings.evaluation_date = Date.from_datetime(d)
        self.start_date = previous_twentieth(d)
        # self._helpers = rate_helpers(self.currency)
        # self._ql_yc = YC(self._helpers)
        # self._yc = ql_to_jp(self._ql_yc)
        ql_yc = YC(currency = self.currency)
        self._yc = ql_to_jp(ql_yc)
        self._trade_date = d
        self._step_in_date = self.trade_date + datetime.timedelta(days=1)
        self._accrued = self._fee_leg.accrued(self._step_in_date)
        self._value_date = (pd.Timestamp(self._trade_date) + 3* BDay()).date()
        if self._spread is not None:
            self._update()

    @classmethod
    def from_name(cls, index, series, tenor, trade_date = datetime.date.today(),
                  notional = 10e6):
        try:
            with serenitasdb.cursor() as c:
                c.execute("SELECT maturity, coupon FROM index_maturity " \
                          "WHERE index=%s AND series=%s AND tenor = %s",
                          (index.upper(), series, tenor))
                maturity, coupon = next(c)
        except DataError as e:
            raise
        else:
            recovery = 0.4 if index.lower() == "ig" else 0.3
            instance = cls(trade_date, maturity, recovery, coupon)
            instance.name = "MARKIT CDX.NA.{}.{} {:%m/%y} ".format(
                index.upper(),
                series,
                maturity)
            if index.upper() in ["IG", "HY"]:
                instance.currency = "USD"
            else:
                instance.currency = "EUR"
            instance.notional = notional
            instance.trade_date = trade_date
            return instance

    def __repr__(self):
        if self.days_accrued > 1:
            accrued_str = "Accrued ({} Days)".format(self.days_accrued)
        else:
            accrued_str = "Accrued ({} Day)".format(self.days_accrued)
        s = ["{:<20}\t{:>15}".format("CDS Index", colored(self.name, attrs = ['bold'])),
             "",
             "{:<20}\t{:>15}".format("Trade Date", ('{:%m/%d/%y}'.
                                                    format(self.trade_date))),
             "{:<20}\t{:>15.2f}\t\t{:<20}\t{:>10,.2f}".format("Trd Sprd (bp)",
                                                              self.spread,
                                                              "Coupon (bp)",
                                                              self.fixed_rate),
             "{:<20}\t{:>15.2f}\t\t{:<20}\t{:>10}".format("1st Accr Start",
                                                          self.spread,
                                                          "Payment Freq",
                                                          "Quarterly"),
             "{:<20}\t{:>15}\t\t{:<20}\t{:>10.2f}".format("Maturity Date",
                                                          ('{:%m/%d/%y}'.
                                                           format(self.end_date)),
                                                          "Rec Rate",
                                                          self.recovery),
             "{:<20}\t{:>15}\t\t{:<20}\t{:>10}".format("Bus Day Adj",
                                                       "Following",
                                                       "Day Count",
                                                       "ACT/360"),
             "",
             colored("Calculator", attrs = ['bold']),
             "{:<20}\t{:>15}".format("Valuation Date", ('{:%m/%d/%y}'.
                                                        format(self.trade_date))),
             "{:<20}\t{:>15}".format("Cash Settled On", ('{:%m/%d/%y}'.
                                                         format(self._value_date))),
             "",
             "{:<20}\t{:>15.8f}\t\t{:<20}\t{:>10,.2f}".format("Price",
                                                              self.price,
                                                              "Spread DV01",
                                                              self.DV01),
             "{:<20}\t{:>15,.0f}\t\t{:<20}\t{:>10,.2f}".format("Principal",
                                                               self.clean_pv,
                                                               "IR DV01",
                                                               self.IRDV01),
             "{:<20}\t{:>15,.0f}\t\t{:<20}\t{:>10,.2f}".format(accrued_str,
                                                               self.accrued,
                                                               "Rec Risk (1%)",
                                                               self.rec_risk),
             "{:<20}\t{:>15,.0f}\t\t{:<20}\t{:>10,.0f}".format("Cash Amount",
                                                               self.pv,
                                                               "Def Exposure",
                                                               self.jump_to_default)
        ]
        return "\n".join(s)


class ForwardIndex(object):
    def __init__(self, index, forward_date, ref_is_price = False):
        self.index = index
        self.forward_date = forward_date
        self.exercise_date_settle = (pd.Timestamp(forward_date) + 3* BDay()).date()
        self.df = index._yc.discount_factor(self.exercise_date_settle)
        self._ref_is_price = ref_is_price
        self._update()

    @property
    def forward_annuity(self):
        return self._forward_annuity

    @property
    def forward_pv(self):
        return self._forward_pv

    @property
    def forward_spread(self):
        return self._forward_spread * 1e4

    @property
    def ref(self):
        if ref_is_price:
            return self.index.price
        else:
            return self.index.spread

    @ref.setter
    def ref(self, val):
        if self._ref_is_price:
            if self.index.price is None or \
               math.fabs(self.index.price - val) > 1e-6:
                self.index.price = val
                self._update()
        else:
            if self.index.spread is None or val != self.index.spread:
                self.index.spread = val
                self._update()

    def _update(self):
        if self.index._sc is not None:
            step_in_date = self.forward_date + datetime.timedelta(days=1)
            a = self.index._fee_leg.pv(self.index.trade_date, step_in_date,
                                       self.index.trade_date, self.index._yc, self.index._sc, False)
            Delta = self.index._fee_leg.accrued(step_in_date)
            q = self.index._sc.survival_probability(self.forward_date)
            self._forward_annuity = a - Delta * self.df * q
            self._forward_pv = self._forward_annuity * (self.index.spread - self.index.fixed_rate) * 1e-4
            fep = (1 - self.index.recovery) * (1 - q)
            self._forward_pv =  self._forward_pv / self.df + fep
            self._forward_spread = self.index._spread + fep * self.df / self._forward_annuity
        else:
            self._forward_annuity, self._forward_pv, self._forward_spread = None, None, None