aboutsummaryrefslogtreecommitdiffstats
path: root/python/analytics/option.py
blob: de59ea2bb51adff0534898ca410888a5e928aa10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import array
import datetime
import math
import numpy as np
import pandas as pd

from .black import black
from .utils import GHquad
from .index import g
from yieldcurve import roll_yc
from pandas.tseries.offsets import BDay
from pyisda.curve import SpreadCurve
from pyisda.flat_hazard import strike_vec
from scipy.optimize import brentq
from scipy.integrate import simps


def calib(S0, fp, exercise_date : datetime.date, exercise_date_settle :datetime.date,
          index, rolled_curve, tilt, w):
    S = S0 * tilt * 1e-4
    a, b = strike_vec(S, rolled_curve, exercise_date, exercise_date_settle,
                      index.start_date, index.end_date, index.recovery)
    vec = a - index.fixed_rate * b * 1e-4
    return np.inner(vec, w) - fp

def ATMstrike(index, exercise_date : datetime.date):
    exercise_date_settle = (pd.Timestamp(exercise_date) + 3* BDay()).date()
    fp = index.forward_pv(exercise_date) / index.notional
    closure = lambda S: g(index, S, exercise_date) - fp
    eta = 1.1
    a = index.spread
    b = index.spread * eta
    while True:
        if closure(b) > 0:
            break
        b *= eta
    return brentq(closure, a, b)

class Swaption:
    def __init__(self, index, exercise_date : datetime.date, strike : float, option_type="payer"):
        self.index = index
        self._exercise_date = exercise_date
        self._forward_yc = roll_yc(self.index._yc, self.exercise_date)
        self.exercise_date_settle = (pd.Timestamp(self.exercise_date) + 3* BDay()).date()
        self._T = None
        self.strike = strike
        self.option_type = option_type.lower()
        self._Z, self._w = GHquad(50)
        self.notional = 1

    @property
    def exercise_date(self):
        return self._exercise_date

    @exercise_date.setter
    def exercise_date(self, d : datetime.date):
        self._exercise_date = d
        self.exercise_date_settle = (pd.Timestamp(d) + 3* BDay()).date()
        self._forward_yc = roll_yc(self.index._yc, self.exercise_date)

    @property
    def pv(self):
        fp = self.index.forward_pv(self.exercise_date) / self.index.notional
        T = self.T
        tilt = np.exp(-self.sigma**2/2 * T + self.sigma * self._Z * math.sqrt(T))
        rolled_curve = roll_yc(self.index._yc, self.exercise_date)
        args = (fp, self.exercise_date, self.exercise_date_settle,
                self.index, self._forward_yc, tilt, self._w)
        eta = 1.1
        a = self.index.spread
        b = self.index.spread * eta
        while True:
            if calib(*((b,) + args)) > 0:
                break
            b *= eta

        S0 = brentq(calib, a, b, args)

        G = g(self.index, self.strike, self.exercise_date)
        if T == 0:
            pv = self.notional * (g(self.index, self.index.spread, self.exercise_date) - G)
            if self.option_type == "payer":
                return pv if self.index.spread > self.strike else 0
            else:
                return - pv if self.index.spread < self.strike else 0

        Zstar = (math.log(self.strike/S0) + self.sigma**2/2 * T) / \
                (self.sigma * math.sqrt(T))

        if self.option_type == "payer":
            Z = Zstar + np.logspace(0, 1.5, 300) - 1
        elif self.option_type == "receiver":
            Z = Zstar - np.logspace(0, 1.5, 300) + 1
        else:
            raise ValueError("option_type needs to be either 'payer' or 'receiver'")
        S = S0 * np.exp(-self.sigma**2/2 * T + self.sigma * Z * math.sqrt(T))
        a, b = strike_vec(S * 1e-4, rolled_curve, self.exercise_date,
                          self.exercise_date_settle,
                          self.index.start_date, self.index.end_date, self.index.recovery)
        val = ((a - b * self.index.fixed_rate*1e-4) - G) * 1/math.sqrt(2*math.pi) * np.exp(-Z**2/2)
        df_scale = self.index._yc.discount_factor(self.exercise_date_settle)
        return self.notional * simps(val, Z) * df_scale

    @property
    def pv2(self):
        G = g(self.index, self.strike, self.exercise_date)
        fp = self.index.forward_pv(self.exercise_date) / self.index.notional
        forward_annuity = self.index.forward_annuity(self.exercise_date)
        DA_forward_spread = fp / forward_annuity + self.index.fixed_rate * 1e-4
        strike_tilde = self.index.fixed_rate * 1e-4 + G  / forward_annuity
        return forward_annuity * black(DA_forward_spread,
                                       strike_tilde,
                                       self.T,
                                       self.sigma,
                                       self.option_type) * self.notional

    @property
    def delta(self):
        old_index_pv = self.index.pv
        old_pv = self.pv
        self.index.spread += 0.1
        notional_ratio = self.index.notional/self.notional
        delta = (self.pv - old_pv)/(self.index.pv - old_index_pv) * notional_ratio
        self.index.spread -= 0.1
        return delta


    @property
    def T(self):
        if self._T:
            return self._T
        else:
            return ((self.exercise_date - self.index.trade_date).days + 1)/365

    @property
    def gamma(self):
        pass

    @property
    def theta(self):
        old_pv = self.pv
        self._T = self.T - 1/365
        theta = self.pv - old_pv
        self._T = None
        return theta

    @property
    def vega(self):
        old_pv = self.pv
        self.sigma += 0.01
        vega = self.pv - old_pv
        self.sigma -= 0.01
        return vega