1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
import array
import datetime
import math
import numpy as np
import pandas as pd
from .black import black
from .utils import GHquad
from .index import g
from yieldcurve import roll_yc
from pandas.tseries.offsets import BDay
from pyisda.curve import SpreadCurve
from pyisda.flat_hazard import strike_vec
from scipy.optimize import brentq
from scipy.integrate import simps
def calib(S0, fp, exercise_date : datetime.date, exercise_date_settle :datetime.date,
index, rolled_curve, tilt, w):
S = S0 * tilt * 1e-4
a, b = strike_vec(S, rolled_curve, exercise_date, exercise_date_settle,
index.start_date, index.end_date, index.recovery)
vec = a - index.fixed_rate * b * 1e-4
return np.inner(vec, w) - fp
def ATMstrike(index, exercise_date : datetime.date):
exercise_date_settle = (pd.Timestamp(exercise_date) + 3* BDay()).date()
fp = index.forward_pv(exercise_date) / index.notional
closure = lambda S: g(index, S, exercise_date) - fp
eta = 1.1
a = index.spread
b = index.spread * eta
while True:
if closure(b) > 0:
break
b *= eta
return brentq(closure, a, b)
class Swaption:
def __init__(self, index, exercise_date : datetime.date, strike : float, option_type="payer"):
self.index = index
self._exercise_date = exercise_date
self._forward_yc = roll_yc(self.index._yc, self.exercise_date)
self.exercise_date_settle = (pd.Timestamp(self.exercise_date) + 3* BDay()).date()
self._T = None
self.strike = strike
self.option_type = option_type.lower()
self._Z, self._w = GHquad(50)
self.notional = 1
@property
def exercise_date(self):
return self._exercise_date
@exercise_date.setter
def exercise_date(self, d : datetime.date):
self._exercise_date = d
self.exercise_date_settle = (pd.Timestamp(d) + 3* BDay()).date()
self._forward_yc = roll_yc(self.index._yc, self.exercise_date)
@property
def pv(self):
fp = self.index.forward_pv(self.exercise_date) / self.index.notional
T = self.T
tilt = np.exp(-self.sigma**2/2 * T + self.sigma * self._Z * math.sqrt(T))
rolled_curve = roll_yc(self.index._yc, self.exercise_date)
args = (fp, self.exercise_date, self.exercise_date_settle,
self.index, self._forward_yc, tilt, self._w)
eta = 1.1
a = self.index.spread
b = self.index.spread * eta
while True:
if calib(*((b,) + args)) > 0:
break
b *= eta
S0 = brentq(calib, a, b, args)
G = g(self.index, self.strike, self.exercise_date)
if T == 0:
pv = self.notional * (g(self.index, self.index.spread, self.exercise_date) - G)
if self.option_type == "payer":
return pv if self.index.spread > self.strike else 0
else:
return - pv if self.index.spread < self.strike else 0
Zstar = (math.log(self.strike/S0) + self.sigma**2/2 * T) / \
(self.sigma * math.sqrt(T))
if self.option_type == "payer":
Z = Zstar + np.logspace(0, 1.5, 300) - 1
elif self.option_type == "receiver":
Z = Zstar - np.logspace(0, 1.5, 300) + 1
else:
raise ValueError("option_type needs to be either 'payer' or 'receiver'")
S = S0 * np.exp(-self.sigma**2/2 * T + self.sigma * Z * math.sqrt(T))
a, b = strike_vec(S * 1e-4, rolled_curve, self.exercise_date,
self.exercise_date_settle,
self.index.start_date, self.index.end_date, self.index.recovery)
val = ((a - b * self.index.fixed_rate*1e-4) - G) * 1/math.sqrt(2*math.pi) * np.exp(-Z**2/2)
df_scale = self.index._yc.discount_factor(self.exercise_date_settle)
return self.notional * simps(val, Z) * df_scale
@property
def pv2(self):
G = g(self.index, self.strike, self.exercise_date)
fp = self.index.forward_pv(self.exercise_date) / self.index.notional
forward_annuity = self.index.forward_annuity(self.exercise_date)
DA_forward_spread = fp / forward_annuity + self.index.fixed_rate * 1e-4
strike_tilde = self.index.fixed_rate * 1e-4 + G / forward_annuity
return forward_annuity * black(DA_forward_spread,
strike_tilde,
self.T,
self.sigma,
self.option_type) * self.notional
@property
def delta(self):
old_index_pv = self.index.pv
old_pv = self.pv
self.index.spread += 0.1
notional_ratio = self.index.notional/self.notional
delta = (self.pv - old_pv)/(self.index.pv - old_index_pv) * notional_ratio
self.index.spread -= 0.1
return delta
@property
def T(self):
if self._T:
return self._T
else:
return ((self.exercise_date - self.index.trade_date).days + 1)/365
@property
def gamma(self):
pass
@property
def theta(self):
old_pv = self.pv
self._T = self.T - 1/365
theta = self.pv - old_pv
self._T = None
return theta
@property
def vega(self):
old_pv = self.pv
self.sigma += 0.01
vega = self.pv - old_pv
self.sigma -= 0.01
return vega
|