aboutsummaryrefslogtreecommitdiffstats
path: root/python/analytics/option.py
blob: 9a5441623d02acc00d82cf54ed7fb0a5ec8fe3e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
from __future__ import division

import array
import datetime
import math
import numpy as np
import pandas as pd

from .black import black
from .utils import GHquad
from .index import g, ForwardIndex
from yieldcurve import roll_yc
from pandas.tseries.offsets import BDay
try:
    import cPickle as pickle
except ImportError:
    import pickle
from pickle import dumps

from functools import wraps
from pyisda.curve import SpreadCurve
from pyisda.flat_hazard import pv_vec
from scipy.optimize import brentq
from scipy.integrate import simps

def calib(S0, fp, exercise_date, exercise_date_settle,
          index, rolled_curve, tilt, w):
    S = S0 * tilt * 1e-4
    pv = pv_vec(S, rolled_curve, exercise_date, exercise_date_settle,
                index.start_date, index.end_date, index.recovery,
                index.fixed_rate * 1e-4)
    return np.inner(pv, w) - fp

def memoize(f):
    @wraps(f)
    def cached_f(*args, **kwargs):
        obj = args[0]
        key = (f.__name__, hash(obj))
        if key in obj._cache:
            return obj._cache[key]
        else:
            v = f(*args, **kwargs)
            obj._cache[key] = v
            return v
    return cached_f

def ATMstrike(index, exercise_date):
    exercise_date_settle = (pd.Timestamp(exercise_date) + 3* BDay()).date()
    fp = index.forward_pv(exercise_date) / index.notional
    closure = lambda S: g(index, S, exercise_date) - fp
    eta = 1.1
    a = index.spread
    b = index.spread * eta
    while True:
        if closure(b) > 0:
            break
        b *= eta
    return brentq(closure, a, b)

class Swaption(ForwardIndex):
    """Swaption class"""
    def __init__(self, index, exercise_date, strike,
                 option_type="payer", strike_is_price=False):
        ForwardIndex.__init__(self, index, exercise_date, strike_is_price)
        self._exercise_date = exercise_date
        self._forward_yc = roll_yc(index._yc, exercise_date)
        self._T = None
        self._strike_is_price = strike_is_price
        self.strike = strike
        self.option_type = option_type.lower()
        self._Z, self._w = GHquad(50)
        self.notional = 1
        self.sigma = None
        self._cache = {}

    @property
    def exercise_date(self):
        return self._exercise_date

    @exercise_date.setter
    def exercise_date(self, d):
        self._exercise_date = d
        ForwardIndex.__init__(self, self.index, d)
        self._forward_yc = roll_yc(self.index._yc, d)
        self._G = g(self.index, self.strike, self.exercise_date, self._forward_yc)

    @property
    def strike(self):
        if self._strike_is_price:
            return 100 * (1 - self._G)
        else:
            return self._strike

    @strike.setter
    def strike(self, K):
        if self._strike_is_price:
            self._G = (100 - K) / 100
            # we compute the corresponding spread to the strike price
            def handle(S, index, forward_date, forward_yc):
                return g(index, S, forward_date, forward_yc) - self._G
            eta = 1.2
            a = 250
            b = eta * a
            while True:
                if handle(b, self.index, self.exercise_date, self._forward_yc) > 0:
                    break
                b *= eta
            self._strike = brentq(handle, a, b,
                                  args=(self.index, self.exercise_date, self._forward_yc))
        else:
            self._G = g(self.index, K, self.exercise_date, self._forward_yc)
            self._strike = K
            #self._G = g(self.index, K, self.exercise_date)

    @property
    def intrinsic_value(self):
        V = self.df * (self.forward_pv - self._G)
        return max(V, 0) if self.option_type == "payer" else max(-V, 0)

    def __hash__(self):
        return hash(dumps([v for k, v in self.__dict__.items() if k not in
             ['_cache', '_Z', '_w']], protocol=pickle.HIGHEST_PROTOCOL))

    @property
    @memoize
    def pv(self):
        T = self.T
        tilt = np.exp(-self.sigma**2/2 * T + self.sigma * self._Z * math.sqrt(T))
        args = (self.forward_pv, self.exercise_date, self.exercise_date_settle,
                self.index, self._forward_yc, tilt, self._w)
        eta = 1.05
        a = self.index.spread
        b = a * eta
        while True:
            if calib(*((b,) + args)) > 0:
                break
            b *= eta

        S0 = brentq(calib, a, b, args)
        if T == 0:
            return self.notional * self.intrinsic
        ## Zstar solves S_0 exp(-\sigma^2/2 * T + sigma * Z^\star\sqrt{T}) = strike
        Zstar = (math.log(self._strike/S0) + self.sigma**2/2 * T) / \
                (self.sigma * math.sqrt(T))

        if self.option_type == "payer":
            Z = Zstar + np.logspace(0, math.log(4 / (self.sigma * math.sqrt(T)), 10), 300) - 1
        elif self.option_type == "receiver":
            Z = Zstar - np.logspace(0, math.log(4 / (self.sigma * math.sqrt(T)), 10), 300) + 1
        else:
            raise ValueError("option_type needs to be either 'payer' or 'receiver'")
        S = S0 * np.exp(-self.sigma**2/2 * T + self.sigma * Z * math.sqrt(T))
        r = pv_vec(S * 1e-4, self._forward_yc, self.exercise_date,
                   self.exercise_date_settle, self.index.start_date,
                   self.index.end_date, self.index.recovery, self.index.fixed_rate * 1e-4)
        val = (r - self._G) * 1/math.sqrt(2*math.pi) * np.exp(-Z**2/2)
        return self.notional * simps(val, Z) * self.df

    @pv.setter
    def pv(self, val):
        if np.isnan(val):
            raise ValueError("val is nan")
        if val < self.intrinsic_value:
            raise ValueError("{}: is less than intrinsic value: {}".
                             format(val, self.intrinsic_value))
        elif val == self.intrinsic_value:
            self.sigma = 0
            return
        def handle(x):
            self.sigma = x
            return self.pv - val
        # use sigma_black as a starting point
        self.pv_black = val
        eta = 1.1
        a = self.sigma
        while True:
            if handle(a) < 0:
                break
            a /= eta
        b = a * eta
        while True:
            if handle(b) > 0:
                break
            b *= eta
        self.sigma = brentq(handle, a, b)

    @property
    def pv_black(self):
        """compute pv using black-scholes formula"""
        if self.sigma == 0:
            return self.intrinsic_value
        else:
            strike_tilde = self.index.fixed_rate * 1e-4 + self._G / self.forward_annuity * self.df
            return self.forward_annuity * black(self.forward_spread * 1e-4,
                                                strike_tilde,
                                                self.T,
                                                self.sigma,
                                                self.option_type) * self.notional
    @pv_black.setter
    def pv_black(self, val):
        if np.isnan(val):
            raise ValueError("val is nan")
        if val < self.intrinsic_value:
            raise ValueError("{}: is less than intrinsic value: {}".
                             format(val, self.intrinsic_value))
        def handle(x):
            self.sigma = x
            return self.pv_black - val
        eta = 1.01
        a = 0.1
        b = a * eta
        while True:
            if handle(b) > 0:
                break
            b *= eta
        self.sigma = brentq(handle, a, b)

    @property
    def delta(self):
        old_index_pv = self.index.pv
        old_pv = self.pv
        self.index.spread += 1
        self._update()
        notional_ratio = self.index.notional/self.notional
        self._dv01 = (self.pv - old_pv)
        delta = self._dv01/(self.index.pv - old_index_pv) * notional_ratio
        self.index.spread -= 1
        self._update()
        return delta

    @property
    def T(self):
        if self._T:
            return self._T
        else:
            return ((self.exercise_date - self.index.trade_date).days + 1)/365

    @property
    def gamma(self):
        self.index.spread += 5
        self._update()
        old_delta = self.delta
        self.index.spread -= 10
        self._update()
        gamma = abs(self.delta- old_delta)
        self.index.spread += 5
        self._update()
        return gamma

    @property
    def theta(self):
        old_pv = self.pv
        self._T = self.T - 1/365
        theta = self.pv - old_pv
        self._T = None
        return theta

    @property
    def vega(self):
        old_pv = self.pv
        self.sigma += 0.01
        vega = self.pv - old_pv
        self.sigma -= 0.01
        return vega

    @property
    def DV01(self):
        old_pv = self.pv
        self.index.spread += 1
        self._update()
        dv01 = self.pv - old_pv
        self.index.spread -= 1
        self._update()
        return dv01

    @property
    def breakeven(self):
        pv = self.pv / self.notional
        if self._strike_is_price:
            if self.option_type == "payer":
                return 100-(self._G + pv)*100
            else:
                return 100-(self._G - pv)*100
        else:
            eta = 1.1
            a = self._strike
            if self.option_type == "payer":
                aux = lambda S: g(self.index, S, self.exercise_date) - (self._G + pv)
                b = a * eta
            else:
                aux = lambda S: g(self.index, S, self.exercise_date) - (self._G - pv)
                b = a / eta
            while True:
                if self.option_type == "payer":
                    if aux(b) > 0:
                        break
                    b *= eta
                else:
                    if aux(b) < 0:
                        break
                    b /= eta

            return brentq(aux, a, b)

    def __repr__(self):
        s = ["{:<20}{}".format(self.index.name, self.option_type),
             "",
             "{:<20}\t{:>15}".format("Trade Date", ('{:%m/%d/%y}'.
                                                    format(self.index.trade_date))),
             "{:<20}\t{:>15.2f}\t\t{:<20}\t{:>10,.2f}".format("Ref Sprd (bp)",
                                                              self.index.spread,
                                                              "Coupon (bp)",
                                                              self.index.fixed_rate),
             "{:<20}\t{:>15.3f}\t\t{:<20}\t{:>10}".format("Ref Price",
                                                          self.index.price,
                                                          "Maturity Date",
                                                          ('{:%m/%d/%y}'.
                                                           format(self.index.end_date))),
             "",
             "Swaption Calculator",
             "",
             "{:<20}\t{:>15.3f}\t\t{:<20}\t{:>10,.2f}".format("Notional",
                                                              self.notional,
                                                              "Premium",
                                                              self.pv),
             "{:<20}\t{:>15.2f}\t\t{:<20}\t{:>10}".format("Strike",
                                                          self.strike,
                                                          "Maturity Date",
                                                          ('{:%m/%d/%y}'.
                                                           format(self.exercise_date))),
             "{:<20}\t{:>15.4f}\t\t{:<20}\t{:>10.3f}".format("Spread Vol",
                                                             self.sigma,
                                                             "Spread DV01",
                                                             self.DV01),
             "{:<20}\t{:>15.3f}\t\t{:<20}\t{:>10.5f}".format("Delta",
                                                             self.delta,
                                                             "Gamma",
                                                             self.gamma),
             "{:<20}\t{:>15.3f}\t\t{:<20}\t{:>10.3f}".format("Vega",
                                                             self.vega,
                                                             "Theta",
                                                             self.theta),
             "{:<20}\t{:>15.3f}\t\t{:<20}\t{:>10.0f}".format("Breakeven",
                                                             self.breakeven,
                                                             "Days to Exercise",
                                                             self.T*365),
             ""
            ]
        return "\n".join(s)