1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
|
from __future__ import division
import array
import datetime
import math
import numpy as np
import pandas as pd
from db import dbengine
from .black import black
from .utils import GHquad, build_table
from .index import g, ForwardIndex, Index, engine
from yieldcurve import roll_yc
from pandas.tseries.offsets import BDay
from functools import wraps
from pyisda.curve import SpreadCurve
from pyisda.flat_hazard import pv_vec
import numpy as np
from scipy.optimize import brentq
from scipy.integrate import simps
from scipy.interpolate import SmoothBivariateSpline
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from multiprocessing import Pool
from functools import partial
from itertools import chain
def calib(S0, fp, exercise_date, exercise_date_settle,
index, rolled_curve, tilt, w):
S = S0 * tilt * 1e-4
pv = pv_vec(S, rolled_curve, exercise_date, exercise_date_settle,
index.start_date, index.end_date, index.recovery,
index.fixed_rate * 1e-4)
return np.inner(pv, w) - fp
def memoize(f):
@wraps(f)
def cached_f(*args, **kwargs):
obj = args[0]
key = (f.__name__, hash(obj))
if key in obj._cache:
return obj._cache[key]
else:
v = f(*args, **kwargs)
obj._cache[key] = v
return v
return cached_f
def ATMstrike(index, exercise_date):
"""computes the at-the-money strike.
Parameters
----------
index :
Index object
exercise_date : datetime.date
expiration date.
price : bool, defaults to False
If price is true return a strike price, returns a spread otherwise.
"""
fi = ForwardIndex(index, exercise_date)
fp = fi.forward_pv
if index._quote_is_price:
return 100 * (1 - fp)
else:
return g(index, index.fixed_rate, exercise_date, pv=fp)
class BlackSwaption(ForwardIndex):
"""Swaption class"""
__slots__ = ['_forward_yc', '_T', '_G', '_strike', 'option_type',
'notional', 'sigma', '_original_pv', '_direction']
def __init__(self, index, exercise_date, strike, option_type="payer",
direction="Long"):
ForwardIndex.__init__(self, index, exercise_date)
self._forward_yc = roll_yc(index._yc, exercise_date)
self._T = None
self.strike = strike
self.option_type = option_type.lower()
self.notional = 1
self.sigma = None
self._original_pv = None
self.direction = direction
@classmethod
def from_tradeid(cls, trade_id, index=None):
engine = dbengine('dawndb')
r = engine.execute("SELECT * from swaptions WHERE id=%s", (trade_id,))
rec = r.fetchone()
if rec is None:
return ValueError("trade_id doesn't exist")
if index is None:
index = Index.from_name(redcode=rec.security_id, maturity=rec.maturity, trade_date=rec.trade_date)
index.ref = rec.index_ref
instance = cls(index, rec.expiration_date, rec.strike, rec.swaption_type.lower(),
direction="Long" if rec.buysell else "Short")
instance.notional = rec.notional
instance.pv = rec.price * 1e-2 * rec.notional * (2 * rec.buysell - 1)
instance._original_pv = instance.pv
return instance
@property
def exercise_date(self):
return self.forward_date
@exercise_date.setter
def exercise_date(self, d):
self.forward_date = d
ForwardIndex.__init__(self, self.index, d)
self._forward_yc = roll_yc(self.index._yc, d)
self._G = g(self.index, self.strike, d, self._forward_yc)
@property
def strike(self):
if self.index._quote_is_price:
return 100 * (1 - self._G)
else:
return self._strike
@strike.setter
def strike(self, K):
if self.index._quote_is_price:
self._G = (100 - K) / 100
self._strike = g(self.index, self.index.fixed_rate,
self.exercise_date, self._forward_yc, self._G)
else:
self._G = g(self.index, K, self.exercise_date, self._forward_yc)
self._strike = K
#self._G = g(self.index, K, self.exercise_date)
@property
def atm_strike(self):
fp = self.forward_pv
if self.index._quote_is_price:
return 100 * (1 - fp)
else:
return g(self.index, self.index.fixed_rate, self.exercise_date, pv=fp)
@property
def moneyness(self):
return self.strike / self.atm_strike
@property
def direction(self):
if self._direction == 1.:
return "Long"
else:
return "Short"
@direction.setter
def direction(self, d):
if d == "Long":
self._direction = 1.
elif d == "Short":
self._direction = -1.
else:
raise ValueError("Direction needs to be either 'Buyer' or 'Seller'")
@property
def intrinsic_value(self):
V = self.df * (self.forward_pv - self._G)
intrinsic = max(V, 0) if self.option_type == "payer" else max(-V, 0)
return self._direction * intrinsic * self.notional
def __hash__(self):
return hash((super().__hash__(), tuple(getattr(self, k) for k in \
BlackSwaption.__slots__)))
@property
def pv(self):
"""compute pv using black-scholes formula"""
if self.sigma == 0:
return self.intrinsic_value
else:
strike_tilde = self.index.fixed_rate * 1e-4 + self._G / self.forward_annuity * self.df
return self._direction * self.forward_annuity * \
black(self.forward_spread * 1e-4,
strike_tilde,
self.T,
self.sigma,
self.option_type == "payer") * self.notional
@pv.setter
def pv(self, val):
if np.isnan(val):
raise ValueError("val is nan")
if self._direction * (val - self.intrinsic_value) < 0:
raise ValueError("{}: is less than intrinsic value: {}".
format(val, self.intrinsic_value))
elif val == self.intrinsic_value:
self.sigma = 0
return
def handle(x):
self.sigma = x
return self._direction * (self.pv - val)
eta = 1.01
a = 0.1
b = a * eta
while True:
if handle(b) > 0:
break
b *= eta
self.sigma = brentq(handle, a, b)
def reset_pv(self):
self._original_pv = self.pv
@property
def pnl(self):
if self._original_pv is None:
raise ValueError("original pv not set")
else:
if self.index.trade_date > self.forward_date: #TODO: do the right thing
return 0 - self._original_pv
else:
return self.pv - self._original_pv
@property
def delta(self):
old_index_pv = self.index.pv
old_pv = self.pv
old_spread = self.index.spread
self.index.spread += 1
self._update()
notional_ratio = self.index.notional / self.notional
dv01 = self.pv - old_pv
delta = -self.index._direction * dv01 * notional_ratio / \
(self.index.pv - old_index_pv)
self.index.spread = old_spread
self._update()
return delta
@property
def T(self):
if self._T:
return self._T
else:
return ((self.exercise_date - self.index.trade_date).days + 1)/365
@property
def gamma(self):
old_spread = self.index.spread
self.index.spread += 5
self._update()
old_delta = self.delta
self.index.spread -= 10
self._update()
gamma = old_delta - self.delta
self.index.spread = old_spread
self._update()
return gamma
@property
def theta(self):
old_pv = self.pv
self._T = self.T - 1/365
theta = self.pv - old_pv
self._T = None
return theta
@property
def vega(self):
old_pv = self.pv
old_sigma = self.sigma
self.sigma += 0.01
vega = self.pv - old_pv
self.sigma = old_sigma
return vega
@property
def DV01(self):
old_pv, old_spread = self.pv, self.index.spread
self.index.spread += 1
self._update()
dv01 = self.pv - old_pv
self.index.spread = old_spread
self._update()
return dv01
@property
def breakeven(self):
pv = self._direction * self.pv / self.notional
if self.index._quote_is_price:
if self.option_type == "payer":
return 100 * (1 - self._G - pv)
else:
return 100 * (1 - self._G + pv)
else:
if self.option_type == "payer":
return g(self.index, self.index.fixed_rate, self.exercise_date,
pv=self._G + pv)
else:
return g(self.index, self.index.fixed_rate, self.exercise_date,
pv=self._G - pv)
def __repr__(self):
s = ["{:<20}{}".format(self.index.name, self.option_type),
"",
"{:<20}\t{:>15}".format("Trade Date", ('{:%m/%d/%y}'.
format(self.index.trade_date)))]
rows = [["Ref Sprd (bp)", self.index.spread, "Coupon (bp)", self.index.fixed_rate],
["Ref Price", self.index.price, "Maturity Date", self.index.end_date]]
format_strings = [[None, "{:.2f}", None, "{:,.2f}"],
[None, "{:.3f}", None, '{:%m/%d/%y}']]
s += build_table(rows, format_strings, "{:<20}\t{:>15}\t\t{:<20}\t{:>10}")
s += ["",
"Swaption Calculator",
""]
rows = [["Notional", self.notional, "Premium", self.pv],
["Strike", self.strike, "Maturity Date", self.exercise_date],
["Spread Vol", self.sigma, "Spread DV01", self.DV01],
["Delta", self.delta * 100, "Gamma", self.gamma * 100],
["Vega", self.vega, "Theta", self.theta],
["Breakeven", self.breakeven, "Days to Exercise", self.T*365]]
format_strings = [[None, '{:,.0f}', None, '{:,.2f}'],
[None, '{:.2f}', None, '{:%m/%d/%y}'],
[None, '{:.4f}', None, '{:,.3f}'],
[None, '{:.3f}%', None, '{:.3f}%'],
[None, '{:,.3f}', None, '{:,.3f}'],
[None, '{:.3f}', None, '{:.0f}']]
s += build_table(rows, format_strings, "{:<20}{:>19}\t\t{:<19}{:>16}")
return "\n".join(s)
def __str__(self):
return "{} at 0x{:02x}".format(type(self), id(self))
class Swaption(BlackSwaption):
__slots__ = ["_cache", "_Z", "_w"]
def __init__(self, index, exercise_date, strike, option_type="payer",
direction="Long"):
super().__init__(index, exercise_date, strike, option_type, direction)
self._Z, self._w = GHquad(50)
self._cache = {}
def __hash__(self):
return super().__hash__()
@property
@memoize
def pv(self):
T = self.T
tilt = np.exp(-self.sigma**2/2 * T + self.sigma * self._Z * math.sqrt(T))
args = (self.forward_pv, self.exercise_date, self.exercise_date_settle,
self.index, self._forward_yc, tilt, self._w)
eta = 1.05
a = self.index.spread * 0.99
b = a * eta
while True:
if calib(*((b,) + args)) > 0:
break
b *= eta
S0 = brentq(calib, a, b, args)
if T == 0:
return self.notional * self.intrinsic_value
## Zstar solves S_0 exp(-\sigma^2/2 * T + sigma * Z^\star\sqrt{T}) = strike
Zstar = (math.log(self._strike/S0) + self.sigma**2/2 * T) / \
(self.sigma * math.sqrt(T))
if self.option_type == "payer":
Z = Zstar + np.logspace(0, math.log(4 / (self.sigma * math.sqrt(T)), 10), 300) - 1
elif self.option_type == "receiver":
Z = Zstar - np.logspace(0, math.log(4 / (self.sigma * math.sqrt(T)), 10), 300) + 1
else:
raise ValueError("option_type needs to be either 'payer' or 'receiver'")
S = S0 * np.exp(-self.sigma**2/2 * T + self.sigma * Z * math.sqrt(T))
r = pv_vec(S * 1e-4, self._forward_yc, self.exercise_date,
self.exercise_date_settle, self.index.start_date,
self.index.end_date, self.index.recovery, self.index.fixed_rate * 1e-4)
val = (r - self._G) * 1/math.sqrt(2*math.pi) * np.exp(-Z**2/2)
return self._direction * self.notional * simps(val, Z) * self.df
@pv.setter
def pv(self, val):
# use sigma_black as a starting point
self.pv_black = val
def handle(x):
self.sigma = x
return self._direction * (self.pv - val)
eta = 1.1
a = self.sigma
while True:
if handle(a) < 0:
break
a /= eta
b = a * eta
while True:
if handle(b) > 0:
break
b *= eta
self.sigma = brentq(handle, a, b)
def __setpv_black(self, val):
black_self = BlackSwaption.__new__(BlackSwaption)
for k in super().__slots__:
setattr(black_self, k, getattr(self, k))
for k in ForwardIndex.__slots__:
if k != '__weakref__':
setattr(black_self, k, getattr(self, k))
black_self.pv = val
self.sigma = black_self.sigma
pv_black = property(None, __setpv_black)
def compute_vol(option, strike, mid):
option.strike = strike
try:
option.pv = mid
except ValueError as e:
return None
else:
return option.sigma
class VolatilitySurface(ForwardIndex):
def __init__(self, index_type, series, tenor='5yr', trade_date=datetime.date.today()):
self._index = Index.from_name(index_type, series, tenor, trade_date, notional=1.)
self._quotes = pd.read_sql_query(
"SELECT swaption_quotes.*, ref FROM swaption_quotes " \
"JOIN swaption_ref_quotes USING (quotedate, index, series, expiry)" \
"WHERE quotedate::date = %s AND index= %s AND series = %s " \
"AND quote_source != 'SG' " \
"ORDER BY quotedate DESC",
engine,
parse_dates = ['quotedate', 'expiry'],
params=(trade_date, index_type.upper(), series))
if self._quotes.empty:
raise ValueError("No quotes for that day")
self._quotes['quotedate'] = (self._quotes['quotedate'].
dt.tz_convert('America/New_York').
dt.tz_localize(None))
self._quotes = self._quotes.sort_values('quotedate')
self._surfaces = {}
for k, g in self._quotes.groupby(['quotedate', 'quote_source']):
quotedate, source = k
for option_type in ["payer", "receiver"]:
for model in ["black", "precise"]:
self._surfaces[(quotedate, source, option_type, model)] = None
def vol(self, T, moneyness, surface_id):
"""computes the vol for a given moneyness and term."""
return self._surfaces[surface_id](T, moneyness)
def list(self, source=None, option_type=None, model=None):
"""returns list of vol surfaces"""
r = []
for k in self._surfaces.keys():
if (source is None or k[1] == source) and \
(option_type is None or k[2] == option_type) and \
(model is None or k[3] == model):
r.append(k)
return r
def __iter__(self):
return self._surfaces.items()
def plot(self, surface_id):
fig = plt.figure()
ax = fig.gca(projection='3d')
xx, yy = np.meshgrid(np.arange(0.1, 0.5, 0.01),
np.arange(0.8, 1.7, 0.01))
surf = ax.plot_surface(xx, yy, self[surface_id].ev(xx, yy),
cmap = cm.viridis)
ax.set_xlabel("Year fraction")
ax.set_ylabel("Moneyness")
ax.set_zlabel("Volatility")
def __getitem__(self, surface_id):
if self._surfaces[surface_id] is None:
quotedate, source, option_type, model = surface_id
quotes = self._quotes[(self._quotes.quotedate == quotedate) &
(self._quotes.quote_source == source)]
self._index.ref = quotes.ref.iat[0]
if model == "black":
swaption_class = BlackSwaption
else:
swaption_class = Swaption
moneyness, T, r = [], [], []
if option_type == "payer":
quotes = quotes.assign(mid = quotes[['pay_bid','pay_offer']].mean(1) * 1e-4)
else:
quotes = quotes.assign(mid = quotes[['rec_bid','rec_offer']].mean(1) * 1e-4)
quotes = quotes.dropna(subset=['mid'])
with Pool(4) as p:
for expiry, df in quotes.groupby(['expiry']):
atm_strike = ATMstrike(self._index, expiry.date())
option = swaption_class(self._index, expiry.date(), 100, option_type)
T.append(option.T * np.ones(df.shape[0]))
moneyness.append(df.strike.values / atm_strike)
r.append(p.starmap(partial(compute_vol, option), df[['strike', 'mid']].values))
r = np.fromiter(chain(*r), np.float, quotes.shape[0])
f = SmoothBivariateSpline(np.hstack(T), np.hstack(moneyness), r)
self._surfaces[surface_id] = f
return f
else:
return self._surfaces[surface_id]
|