1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
from .index import CreditIndex
from .option import BlackSwaption
from .tranche_basket import DualCorrTranche
import pandas as pd
import numpy as np
import logging
logger = logging.getLogger(__name__)
def portf_repr(method):
def f(*args):
portf = args[0]
thousands = "{:,.2f}".format
def percent(x):
if np.isnan(x):
return "N/A"
else:
return f"{100*x:.2f}%"
header = f"Portfolio {portf.value_date}\n\n"
kwargs = {
"formatters": {
"Notional": thousands,
"PV": thousands,
"Delta": percent,
"Gamma": percent,
"Theta": thousands,
"Vega": thousands,
"Vol": percent,
"Ref": thousands,
"Attach Rho": percent,
"Detach Rho": percent,
"HY Equiv": thousands,
"Strike": lambda x: "N/A" if np.isnan(x) else str(x),
"Type": lambda x: "N/A" if x is None else x,
"Corr01": thousands,
},
"index": True,
}
if method == "string":
kwargs["line_width"] = 100
s = getattr(portf._todf().dropna(axis=1, how="all"), "to_" + method)(**kwargs)
return header + s
return f
class Portfolio:
def __init__(self, trades, trade_ids=None):
self.trades = trades
if trade_ids is not None:
self.trade_ids = trade_ids
else:
self.trade_ids = (None,) * len(trades)
if trades:
value_dates = set(t.value_date for t in self.trades)
self._value_date = value_dates.pop()
if len(value_dates) >= 1:
logger.warn(
f"not all instruments have the same trade date, picking {self._value_date}"
)
def __bool__(self):
return bool(self.trades)
def add_trade(self, trades, trade_ids):
self.trades.append(trades)
self.trade_ids.append(trade_ids)
def __iter__(self):
for t in self.trades:
yield t
def __getitem__(self, trade_id):
for tid, trade in zip(self.trade_ids, self.trades):
if tid == trade_id:
break
else:
raise ValueError(f"{trade_id} not found")
return trade
def __bool__(self):
return self.trades != []
@property
def indices(self):
return [t for t in self.trades if isinstance(t, CreditIndex)]
@property
def swaptions(self):
return [t for t in self.trades if isinstance(t, BlackSwaption)]
@property
def tranches(self):
return [t for t in self.trades if isinstance(t, DualCorrTranche)]
def items(self):
for trade_id, trade in zip(self.trade_ids, self.trades):
yield (trade_id, trade)
@property
def pnl(self):
return sum(t.pnl for t in self.trades)
@property
def pnl_list(self):
return [t.pnl for t in self.trades]
@property
def pv(self):
return sum(t.pv for t in self.trades)
@property
def pv_list(self):
return [t.pv for t in self.trades]
def reset_pv(self):
for t in self.trades:
t.reset_pv()
@property
def value_date(self):
return self._value_date
@value_date.setter
def value_date(self, d):
for t in self.trades:
t.value_date = d
self._value_date = d
def mark(self, **kwargs):
for tid, t in self.items():
try:
t.mark(**kwargs)
logger.debug(f"marking {tid} to {t.pv}")
except Exception as e:
raise
def shock(self, params=["pnl"], **kwargs):
return {
trade_id: trade.shock(params, **kwargs) for trade_id, trade in self.items()
}
@property
def ref(self):
if len(self.indices) == 1:
return self.indices[0].ref
else:
return [index.ref for index in self.indices]
@ref.setter
def ref(self, val):
if len(self.indices) == 1:
self.indices[0].ref = val
elif len(self.indices) == 0:
# no index, so set the individual refs
for t in self.swaptions:
t.index.ref = val
elif len(self.indices) == len(val):
for index, val in zip(self.indices, val):
index.ref = val
else:
raise ValueError("The number of refs doesn't match the number of indices")
@property
def spread(self):
if len(self.indices) == 1:
return self.indices[0].spread
else:
return [index.spread for index in self.indices]
@spread.setter
def spread(self, val):
if len(self.indices) == 1:
self.indices[0].spread = val
elif len(self.indices) == 0:
# no index, so set the individual refs
for t in self.swaptions:
t.index.spread = val
elif len(self.indices) == len(val):
for index, val in zip(self.indices, val):
index.spread = val
else:
raise ValueError(
"The number of spreads doesn't match the number of indices"
)
@property
def delta(self):
"""returns the equivalent protection notional
makes sense only where there is a single index."""
return sum(
[getattr(t, "delta", t._direction) * t.notional for t in self.trades]
)
@property
def gamma(self):
return sum([getattr(t, "gamma", 0) * t.notional for t in self.trades])
@property
def dv01(self):
return sum(t.dv01 for t in self.trades)
@property
def theta(self):
return sum(t.theta for t in self.trades)
@property
def hy_equiv(self):
return sum(t.hy_equiv for t in self.trades)
@property
def corr01(self):
return sum(t.corr01 for t in self.trades)
@property
def vega(self):
return sum(t.vega for t in self.trades)
def _todf(self):
headers = [
"Product",
"Index",
"Notional",
"Ref",
"Strike",
"Direction",
"Type",
"Expiry",
"Vol",
"PV",
"Delta",
"Gamma",
"Theta",
"Corr01",
"IRDV01",
"Vega",
"attach",
"detach",
"Attach Rho",
"Detach Rho",
"HY Equiv",
]
rec = []
for t in self.trades:
if isinstance(t, CreditIndex):
name = f"{t.index_type}{t.series} {t.tenor}"
r = (
"Index",
name,
t.notional,
t.ref,
None,
t.direction,
getattr(t, "option_type", None),
getattr(t, "forward_date", None),
None,
t.pv,
1.0,
None,
t.theta,
getattr(t, "corr01", None),
getattr(t, "IRDV01", None),
getattr(t, "vega", None),
None,
None,
None,
None,
t.hy_equiv,
)
elif isinstance(t, BlackSwaption):
name = f"{t.index.index_type}{t.index.series} {t.index.tenor}"
r = (
"Swaption",
name,
t.notional,
t.ref,
t.strike,
t.direction,
t.option_type,
t.forward_date,
t.sigma,
t.pv,
t.delta,
t.gamma,
t.theta,
getattr(t, "corr01", None),
getattr(t, "IRDV01", None),
t.vega,
None,
None,
None,
None,
t.hy_equiv,
)
elif isinstance(t, DualCorrTranche):
name = f"{t.index_type}{t.series} {t.tenor}"
try:
theta = t.theta()
except ValueError:
theta = t.pv / t.notional / t.duration + t.tranche_running * 1e-4
r = (
"Tranche",
name,
t.notional,
None,
None,
t.direction,
None,
None,
None,
t.pv,
t.delta,
t.gamma,
theta,
getattr(t, "corr01", None),
getattr(t, "IRDV01", None),
None,
t.attach,
t.detach,
t.rho[0],
t.rho[1],
t.hy_equiv,
)
else:
raise TypeError
rec.append(r)
if isinstance(self.trade_ids[0], tuple):
index = [tid[1] for tid in self.trade_ids]
else:
index = self.trade_ids
df = pd.DataFrame.from_records(rec, columns=headers, index=index)
df.index.name = "ids"
return df
__repr__ = portf_repr("string")
_repr_html_ = portf_repr("html")
|