aboutsummaryrefslogtreecommitdiffstats
path: root/python/analytics/sabr.py
blob: 71b42cadd94ad5f218e288e618bc7199297ae454 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import datetime
import math
import numpy as np


def sabr_lognormal(alpha, rho, nu, F, K, T):
    A = 1 + (0.25 * (alpha * nu * rho) + nu * nu * (2 - 3 * rho * rho) / 24.0) * T
    if F == K:
        VOL = alpha * A
    elif F != K:
        nulogFK = nu * math.log(F / K)
        z = nulogFK / alpha
        x = math.log((math.sqrt(1 - 2 * rho * z + z ** 2) + z - rho) / (1 - rho))
        VOL = (nulogFK * A) / x
    return VOL


def sabr_normal(alpha, rho, nu, F, K, T):
    if F == K:
        V = F
        A = (
            1
            + (alpha * alpha / (24.0 * V * V) + nu * nu * (2 - 3 * rho * rho) / 24.0)
            * T
        )
        VOL = (alpha / V) * A
    elif F != K:
        V = math.sqrt(F * K)
        logFK = math.log(F / K)
        z = (nu / alpha) * V * logFK
        x = math.log((math.sqrt(1 - 2 * rho * z + z ** 2) + z - rho) / (1 - rho))
        A = (
            1
            + (
                (alpha * alpha) / (24.0 * (V * V))
                + ((nu * nu) * (2 - 3 * (rho * rho)) / 24.0)
            )
            * T
        )
        logFK2 = logFK * logFK
        B = 1 / 1920.0 * logFK2 + 1 / 24.0
        B = 1 + B * logFK2
        VOL = (nu * logFK * A) / (x * B)
    return VOL


def sabr(alpha, beta, rho, nu, F, K, T):
    if beta == 0.0:
        return sabr_normal(alpha, rho, nu, F, K, T)
    elif beta == 1.0:
        return sabr_lognormal(alpha, rho, nu, F, K, T)
    else:
        if F == K:  # ATM formula
            V = F ** (1 - beta)
            A = (
                1
                + (
                    ((1 - beta) ** 2 * alpha ** 2) / (24.0 * (V ** 2))
                    + (alpha * beta * nu * rho) / (4.0 * V)
                    + ((nu ** 2) * (2 - 3 * (rho ** 2)) / 24.0)
                )
                * T
            )
            VOL = (alpha / V) * A
        elif F != K:  # not-ATM formula
            V = (F * K) ** ((1 - beta) / 2.0)
            logFK = math.log(F / K)
            z = (nu / alpha) * V * logFK
            x = math.log((math.sqrt(1 - 2 * rho * z + z ** 2) + z - rho) / (1 - rho))
            A = (
                1
                + (
                    ((1 - beta) ** 2 * alpha ** 2) / (24.0 * (V ** 2))
                    + (alpha * beta * nu * rho) / (4.0 * V)
                    + ((nu ** 2) * (2 - 3 * (rho ** 2)) / 24.0)
                )
                * T
            )
            B = (
                1
                + (1 / 24.0) * (((1 - beta) * logFK) ** 2)
                + (1 / 1920.0) * (((1 - beta) * logFK) ** 4)
            )
            VOL = (nu * logFK * A) / (x * B)
    return VOL


if __name__ == "__main__":
    from analytics.option import BlackSwaption
    from analytics import CreditIndex
    from scipy.optimize import least_squares

    underlying = CreditIndex("IG", 28, "5yr")
    underlying.spread = 67.5
    exercise_date = datetime.date(2017, 9, 20)
    option = BlackSwaption(underlying, exercise_date, 70)

    strikes = np.array([50, 55, 57.5, 60, 62.5, 65, 67.5, 70, 75, 80, 85])
    pvs = np.array([44.1, 25.6, 18.9, 14, 10.5, 8.1, 6.4, 5, 3.3, 2.2, 1.5]) * 1e-4

    strikes = np.array([50, 55, 57.5, 60, 62.5, 65, 67.5, 70, 75, 80, 85, 90, 95, 100])
    pvs = (
        np.array(
            [
                53.65,
                37.75,
                31.55,
                26.45,
                22.25,
                18.85,
                16.15,
                13.95,
                10.55,
                8.05,
                6.15,
                4.65,
                3.65,
                2.75,
            ]
        )
        * 1e-4
    )

    def calib(x, option, strikes, pv, beta):
        alpha, rho, nu = x
        F = option.forward_spread
        T = option.T
        r = np.empty_like(strikes)
        for i, K in enumerate(strikes):
            option.strike = K
            option.sigma = sabr(alpha, beta, rho, nu, F, K, T)
            r[i] = option.pv - pv[i]
        return r

    prog = least_squares(
        calib,
        (0.3, 0.5, 0.3),
        bounds=(np.zeros(3), [np.inf, 1, np.inf]),
        args=(option, strikes, pvs, 1),
    )