1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
|
from analytics import ATMstrike
from joblib import delayed, Parallel
import pandas as pd
from copy import deepcopy
import numpy as np
from contextlib import contextmanager
from itertools import chain
from functools import partial
from multiprocessing import Pool
from .index_data import _get_singlenames_curves
from .curve_trades import curve_shape
from scipy.interpolate import RectBivariateSpline
def run_swaption_scenarios(swaption, date_range, spread_shock, vol_shock,
vol_surface, params=["pv"], vol_time_roll=True):
"""computes the pv of a swaption for a range of scenarios
Parameters
----------
swaption : Swaption
date_range : `pandas.Datetime.Index`
spread_shock : `np.array`
vol_shock : `np.array`
vol_surface
params : list of strings
list of attributes to call on the swaption object.
"""
swaption = deepcopy(swaption)
spreads = swaption.ref * (1 + spread_shock)
T = swaption.T
r = []
for date in date_range:
swaption.index.value_date = date.date()
if vol_time_roll: T = swaption.T
for s in spreads:
swaption.ref = s
curr_vol = max(0, float(vol_surface(T, swaption.moneyness)))
for vs in vol_shock:
swaption.sigma = curr_vol * (1 + vs)
r.append([date, s, vs] + [getattr(swaption, p) for p in params])
df = pd.DataFrame.from_records(r, columns=['date', 'spread', 'vol_shock'] + params)
return df.set_index('date')
def run_index_scenarios(index, date_range, spread_shock, params=['pnl']):
index = deepcopy(index)
spreads = index.spread * (1 + spread_shock)
r = []
for date in date_range:
index.value_date = date.date()
for s in spreads:
index.spread = s
r.append([date, s] + [getattr(index, p) for p in params])
df = pd.DataFrame.from_records(r, columns=['date', 'spread'] + params)
return df.set_index('date')
def _aux(portf, curr_vols, params, vs):
for swaption, curr_vol in zip(portf.swaptions, curr_vols):
swaption.sigma = curr_vol * (1 + vs)
return [vs] + [getattr(portf, p) for p in params]
@contextmanager
def MaybePool(nproc):
yield Pool(nproc) if nproc > 0 else None
def run_portfolio_scenarios(portf, date_range, spread_shock, vol_shock,
vol_surface, params=["pnl"], nproc=-1, vol_time_roll=True):
"""computes the pnl of a portfolio for a range of scenarios
Parameters
----------
swaption : Swaption
date_range : `pandas.Datetime.Index`
spread_shock : `np.array`
vol_shock : `np.array`
vol_surface : VolSurface
params : list of strings
list of attributes to call on the Portfolio object.
nproc : int
if nproc > 0 run with nproc processes.
"""
portf = deepcopy(portf)
spreads = np.hstack([index.spread * (1 + spread_shock) for index in portf.indices])
t = [swaption.T for swaption in portf.swaptions]
r = []
with MaybePool(nproc) as pool:
pmap = pool.map if pool else map
for date in date_range:
portf.value_date = date.date()
if vol_time_roll:
t = [swaption.T for swaption in portf.swaptions]
for s in spreads:
portf.spread = s
mon = [swaption.moneyness for swaption in portf.swaptions]
curr_vols = np.maximum(vol_surface.ev(t, mon), 0)
temp = pmap(partial(_aux, portf, curr_vols, params), vol_shock)
r.append([[date, s] + rec for rec in temp])
df = pd.DataFrame.from_records(chain(*r), columns=['date', 'spread', 'vol_shock'] + params)
return df.set_index('date')
def run_tranche_scenarios(tranche, spread_range, date_range, corr_map=False):
"""computes the pnl of a tranche for a range of spread scenarios
Parameters
----------
tranche : TrancheBasket
spread_range : `np.array`, spread range to run (different from swaption)
corr_map: static correlation or mapped correlation
"""
_get_singlenames_curves.cache_clear()
if np.isnan(tranche.rho[1]):
tranche.build_skew()
temp_tranche = deepcopy(tranche)
orig_tranche_pvs = tranche.tranche_pvs().bond_price
results = []
index_pv = np.empty_like(spread_range)
tranche_pv = np.empty((len(spread_range), tranche.K.size - 1))
tranche_delta = np.empty((len(spread_range), tranche.K.size - 1))
for d in date_range:
try:
temp_tranche.value_date = d.date()
except ValueError: # we shocked in the future probably
pass
for i, spread in enumerate(spread_range):
print(spread)
temp_tranche.tweak(spread)
if corr_map:
temp_tranche.rho = tranche.map_skew(temp_tranche, 'TLP')
index_pv[i] = temp_tranche._snacpv(spread * 1e-4,
temp_tranche.coupon(temp_tranche.maturity),
temp_tranche.recovery)
tranche_pv[i] = temp_tranche.tranche_pvs().bond_price
tranche_delta[i] = temp_tranche.tranche_deltas()['delta']
columns = pd.MultiIndex.from_product([['pv', 'delta'], tranche._row_names])
df = pd.DataFrame(np.hstack([tranche_pv, tranche_delta]), columns=columns,
index=spread_range)
carry = pd.Series((d.date() - tranche.value_date).days / 360 * \
tranche.tranche_quotes.running.values,
index=tranche._row_names)
df = df.join(
pd.concat({'pnl': df['pv'] - orig_tranche_pvs + carry,
'index_price_snac_pv': pd.Series(index_pv, index=spread_range,
name='pv')},
axis=1))
results.append(df)
results = pd.concat(results, keys=date_range)
results.index.names = ['date', 'spread_range']
return results
def run_tranche_scenarios_rolldown(tranche, spread_range, date_range, corr_map=False):
"""computes the pnl of a tranche for a range of spread scenarios
curve roll down from the back, and valuations interpolated in the dates in between
Parameters
----------
tranche : TrancheBasket
spread_range : `np.array`, spread range to run (different from swaption)
corr_map: static correlation or mapped correlation
"""
if np.isnan(tranche.rho[2]):
tranche.build_skew()
temp_tranche = deepcopy(tranche)
orig_tranche_pvs = tranche.tranche_pvs().bond_price
#create blanks
tranche_pv, tranche_delta = [], []
tranche_pv_f, tranche_delta_f = [], []
index_pv = np.empty(smaller_spread_range.shape[0], days.shape[0])
#do less scenarios, takes less time since the convexity is not as strong as swaptions
days = np.diff((tranche.cs.index - date_range[0]).days.values)
num_shortened = np.sum(tranche.cs.index < date_range[-1])
shorten_by = np.arange(0, max(1, num_shortened)+1, 1)
days = np.append(0, np.cumsum(np.flip(days,0))[:len(shorten_by)-1])
smaller_spread_range = np.linspace(spread_range[0], spread_range[-1], 10)
for i, spread in enumerate(smaller_spread_range):
for shortened in shorten_by:
if shortened > 0:
temp_tranche.cs = tranche.cs.iloc[:-shortened]
else:
temp_tranche.cs = tranche.cs
temp_tranche.tweak(spread)
if corr_map:
temp_tranche.rho = tranche.map_skew(temp_tranche, 'TLP')
index_pv[i] = temp_tranche.index_pv().bond_price
tranche_pv.append(temp_tranche.tranche_pvs().bond_price)
tranche_delta.append(temp_tranche.tranche_deltas()['delta'])
tranche_pv = np.array(tranche_pv).transpose()
tranche_delta = np.array(tranche_delta).transpose()
index_pv_f = RectBivariateSpline(days, smaller_spread_range, index_pv, kx=1, ky=1)
for pv, delta in zip(tranche_pv, tranche_delta):
pv = np.reshape(pv, (smaller_spread_range.shape[0], days.shape[0])).transpose()
delta = np.reshape(delta, (smaller_spread_range.shape[0], days.shape[0])).transpose()
tranche_pv_f.append(RectBivariateSpline(days, smaller_spread_range, pv, kx=1, ky=1))
tranche_delta_f.append(RectBivariateSpline(days, smaller_spread_range, delta, kx=1, ky=1))
#Reset the blanks
date_range_days = (date_range - date_range[0]).days.values
tranche_pv = np.empty((tranche.K.size - 1, len(date_range_days), len(spread_range)))
tranche_delta = np.empty((tranche.K.size - 1, len(date_range_days), len(spread_range)))
index_pv = index_pv_f(date_range_days, spread_range)
for i in range(len(tranche_pv_f)):
tranche_pv[i] = tranche_pv_f[i](date_range_days, spread_range)
tranche_delta[i] = tranche_delta_f[i](date_range_days, spread_range)
index_pv = index_pv.reshape(1,len(date_range_days) * len(spread_range)).T
tranche_pv = tranche_pv.reshape(len(tranche._row_names),len(date_range_days) * len(spread_range)).T
tranche_delta = tranche_delta.reshape(len(tranche._row_names),len(date_range_days) * len(spread_range)).T
days_diff = np.tile(((date_range - date_range[0]).days/360).values, len(tranche._row_names))
carry = pd.DataFrame(days_diff.reshape(len(tranche._row_names),len(date_range)).T,
index=date_range,
columns=pd.MultiIndex.from_product([['carry'], tranche._row_names]))
carry.index.name = 'date'
df = pd.concat({'index_pv': pd.DataFrame(index_pv,
index=pd.MultiIndex.from_product([date_range, spread_range]),
columns=['index_pv']),
'pv': pd.DataFrame(tranche_pv,
index=pd.MultiIndex.from_product([date_range, spread_range]),
columns=tranche._row_names),
'delta': pd.DataFrame(tranche_delta,
index=pd.MultiIndex.from_product([date_range, spread_range]),
columns=tranche._row_names)},
axis=1)
df.index.names = ['date', 'spread_range']
df = df.join(carry)
df = df.join(pd.concat({'pnl': df['pv'].sub(orig_tranche_pvs)}, axis=1))
return df
def run_curve_scenarios(portf, spread_range, date_range, curve_per):
"""computes the pnl of a portfolio of indices for a range of spread/curve scenarios
Parameters
----------
portf : Portfolio
spread_range : `np.array`
date_range : `pandas.Datetime.Index`
"""
portf.reset_pv()
portf = deepcopy(portf)
index = portf.indices[0].index_type
r = []
for p in curve_per:
new_curve = curve_shape(date_range[0], index, p, 100)
for date in date_range:
portf.value_date = date.date()
for s in spread_range:
for ind in portf.indices:
ind.spread = new_curve((pd.to_datetime(ind.end_date) - date).days/365) * s/100
r.append([[date, s, p] + [portf.pnl]])
df = pd.DataFrame.from_records(chain(*r), columns=['date', 'spread', 'curve_per', 'pnl'])
return df.set_index('date')
|