aboutsummaryrefslogtreecommitdiffstats
path: root/python/analytics/tranche_basket.py
blob: b75559abf57a854e57f33cea42e8202ee11e43be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
from .basket_index import BasketIndex
from .tranche_functions import (
    credit_schedule,
    adjust_attachments,
    GHquad,
    BCloss_recov_dist,
    BCloss_recov_trunc,
    tranche_cl,
    tranche_pl,
    tranche_pl_trunc,
    tranche_cl_trunc,
)
from .exceptions import MissingDataError
from .index_data import get_tranche_quotes
from .utils import memoize, build_table, bus_day, next_twentieth
from collections import namedtuple
from . import dawn_engine, serenitas_engine, serenitas_pool
from copy import deepcopy
from dateutil.relativedelta import relativedelta
from lru import LRU
from math import log
from pyisda.date import cds_accrued
from scipy.optimize import brentq
from scipy.interpolate import CubicSpline, PchipInterpolator
from scipy.special import logit, expit

import datetime
import logging
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import analytics

logger = logging.getLogger(__name__)


class Skew:
    _cache = LRU(64)

    def __init__(self, el: float, skew: CubicSpline):
        self.el = el
        self.skew_fun = skew

    def __iter__(self):
        yield self.el
        yield self.skew_fun

    def __call__(self, k):
        return expit(self.skew_fun(np.log(k)))

    @classmethod
    def from_desc(
        cls, index_type: str, series: int, tenor: str, *, value_date: datetime.date
    ):
        if index_type == "BS":
            # we mark bespokes to IG29 skew.
            key = ("IG", 29, "5yr", value_date)
        else:
            key = (index_type, series, tenor, value_date)
        if key in Skew._cache:
            return Skew._cache[key]
        else:
            conn = serenitas_pool.getconn()
            sql_str = (
                "SELECT indexfactor, cumulativeloss "
                "FROM index_version "
                "WHERE lastdate>=%s AND index=%s AND series=%s"
            )
            with conn.cursor() as c:
                c.execute(sql_str, (value_date, *key[:2]))
                factor, cumloss = c.fetchone()
            conn.commit()
            sql_string = (
                "SELECT tranche_id, index_expected_loss, attach, corr_at_detach "
                "FROM tranche_risk b "
                "LEFT JOIN tranche_quotes a ON a.id = b.tranche_id "
                "WHERE a.index=%s AND a.series=%s AND a.tenor=%s "
                "AND quotedate::date=%s ORDER BY a.attach"
            )
            with conn.cursor() as c:
                c.execute(sql_string, key)
                K, rho = [], []
                for tranche_id, el, attach, corr_at_detach in c:
                    K.append(attach)
                    if corr_at_detach is not None:
                        rho.append(corr_at_detach)
            conn.commit()
            serenitas_pool.putconn(conn)
            if not K:
                raise MissingDataError(
                    f"No skew for {index_type}{series} {tenor} on {value_date}"
                )
            K.append(100)
            K = np.array(K) / 100
            K = adjust_attachments(K, cumloss / 100, factor / 100)
            skew_fun = CubicSpline(np.log(K[1:-1] / el), logit(rho), bc_type="natural")
            s = Skew(el, skew_fun)
            Skew._cache[key] = s
            return s

    def plot(self, moneyness_space=True):
        if moneyness_space:
            moneyness = np.linspace(0, 10, 100)
            rho = self(moneyness)
            plt.plot(moneyness, rho)
            plt.xlabel("moneyness")
            plt.ylabel("rho")
            plt.plot(self.skew_fun.x, self(self.skew_fun.x), "ro")
        else:
            attach = np.linspace(0, 1, 100)
            rho = self(attach / self.el)
            plt.plot(attach, rho)
            plt.xlabel("attach")
            plt.ylabel("rho")
            k = np.exp(self.skew_fun.x) * self.el
            plt.plot(k, self(np.exp(self.skew_fun.x)), "ro")


class DualCorrTranche:
    _cache = LRU(512)
    _Legs = namedtuple("Legs", "coupon_leg, protection_leg, bond_price")

    def __init__(
        self,
        index_type: str = None,
        series: int = None,
        tenor: str = None,
        *,
        attach: float,
        detach: float,
        corr_attach: float,
        corr_detach: float,
        tranche_running: float,
        notional: float = 10_000_000,
        redcode: str = None,
        maturity: datetime.date = None,
        value_date: pd.Timestamp = pd.Timestamp.today().normalize(),
        use_trunc=False,
    ):

        if all((redcode, maturity)):
            r = serenitas_engine.execute(
                "SELECT index, series, tenor FROM index_desc "
                "WHERE redindexcode=%s AND maturity = %s",
                (redcode, maturity),
            )
            index_type, series, tenor = next(r)

        self._index = BasketIndex(index_type, series, [tenor], value_date=value_date)

        self.index_type = index_type
        self.series = series
        self.tenor = tenor
        self.K_orig = np.array([attach, detach]) / 100
        self.attach, self.detach = attach, detach
        self.K = adjust_attachments(
            self.K_orig, self._index.cumloss, self._index.factor
        )
        self._Ngh = 250
        self._Ngrid = 301
        self._Z, self._w = GHquad(self._Ngh)
        self.rho = [corr_attach, corr_detach]
        self.tranche_running = tranche_running
        self.notional = notional
        self.cs = credit_schedule(
            value_date, None, 1.0, self._index.yc, self._index.maturities[0]
        )
        self._accrued = cds_accrued(value_date, tranche_running * 1e-4)
        self.use_trunc = use_trunc
        self._tranche_id = None
        self._ignore_hash = set(["_Z", "_w", "cs", "_cache", "_Legs", "_ignore_hash"])

    @property
    def maturity(self):
        return self._index.maturities[0]

    @maturity.setter
    def maturity(self, m):
        self._index.maturities = [m]
        self.cs = credit_schedule(self.value_date, None, 1.0, self._index.yc, m)

    def _default_prob(self, epsilon=0.0):
        return (
            1
            - self._index.survival_matrix(
                self.cs.index.to_numpy("M8[D]").view("int") + 134774, epsilon
            )[0]
        )

    def __hash__(self):
        def aux(v):
            if isinstance(v, list):
                return hash(tuple(v))
            elif type(v) is np.ndarray:
                return hash(v.tobytes())
            else:
                return hash(v)

        return hash(
            tuple(aux(v) for k, v in vars(self).items() if k not in self._ignore_hash)
        )

    @classmethod
    def from_tradeid(cls, trade_id):
        r = dawn_engine.execute(
            "SELECT cds.*, index_desc.index, index_desc.series, "
            "index_desc.tenor FROM cds "
            "LEFT JOIN index_desc "
            "ON security_id = redindexcode AND "
            "cds.maturity = index_desc.maturity "
            "WHERE id=%s",
            (trade_id,),
        )
        rec = r.fetchone()
        instance = cls(
            rec.index,
            rec.series,
            rec.tenor,
            attach=rec.orig_attach,
            detach=rec.orig_detach,
            corr_attach=rec.corr_attach,
            corr_detach=rec.corr_detach,
            notional=rec.notional,
            tranche_running=rec.fixed_rate * 100,
            value_date=rec.trade_date,
        )
        instance.direction = rec.protection
        if rec.index_ref is not None:
            instance._index.tweak([rec.index_ref])
        instance._trade_date = rec.trade_date
        try:
            instance.reset_pv()
        except ValueError:
            pass
        return instance

    @property
    def value_date(self):
        return self._index.value_date

    @value_date.setter
    def value_date(self, d: pd.Timestamp):
        self._index.value_date = d
        self.cs = credit_schedule(
            d, None, 1.0, self._index.yc, self._index.maturities[0]
        )
        self._accrued = cds_accrued(d, self.tranche_running * 1e-4)
        if (
            self._index.index_type == "XO"
            and self._index.series == 22
            and self.value_date > datetime.date(2016, 4, 25)
        ):
            self._index._factor += 0.013333333333333333

        self.K = adjust_attachments(
            self.K_orig, self._index.cumloss, self._index.factor
        )

    @memoize(hasher=lambda args: (hash(args[0]._index), *args[1:]))
    def tranche_legs(self, K, rho, epsilon=0.0):
        if K == 0.0:
            return self._Legs(0.0, 0.0, 1.0)
        elif K == 1.0:
            return self._Legs(*self.index_pv(epsilon))
        elif rho is None:
            raise ValueError("ρ needs to be a real number between 0. and 1.")
        else:
            if self.use_trunc:
                EL, ER = BCloss_recov_trunc(
                    self._default_prob(epsilon),
                    self._index.weights,
                    self._index.recovery_rates,
                    rho,
                    K,
                    self._Z,
                    self._w,
                    self._Ngrid,
                )
                cl = tranche_cl_trunc(EL, ER, self.cs, 0.0, K)
                pl = tranche_pl_trunc(EL, self.cs, 0.0, K)
            else:
                L, R = BCloss_recov_dist(
                    self._default_prob(epsilon),
                    self._index.weights,
                    self._index.recovery_rates,
                    rho,
                    self._Z,
                    self._w,
                    self._Ngrid,
                )
                cl = tranche_cl(L, R, self.cs, 0.0, K)
                pl = tranche_pl(L, self.cs, 0.0, K)
            bp = 1 + cl * self.tranche_running * 1e-4 + pl
            return self._Legs(cl, pl, bp)

    def index_pv(self, epsilon=0.0, discounted=True):
        DP = self._default_prob(epsilon)
        df = self.cs.df.values
        coupons = self.cs.coupons
        ELvec = self._index.weights * (1 - self._index.recovery_rates) @ DP
        size = 1 - self._index.weights @ DP
        sizeadj = 0.5 * (np.hstack((1.0, size[:-1])) + size)
        if not discounted:
            pl = -ELvec[-1]
            cl = coupons @ sizeadj
        else:
            pl = -np.diff(np.hstack((0.0, ELvec))) @ df
            cl = coupons @ (sizeadj * df)
        bp = 1 + cl * self._index.coupon(self.maturity) + pl
        return self._Legs(cl, pl, bp)

    @property
    def direction(self):
        if self.notional > 0.0:
            return "Buyer"
        else:
            return "Seller"

    @direction.setter
    def direction(self, d):
        if d == "Buyer":
            self.notional = abs(self.notional)
        elif d == "Seller":
            self.notional = -abs(self.notional)
        else:
            raise ValueError("Direction needs to be either 'Buyer' or 'Seller'")

    @property
    def pv(self):
        pl, cl = self._pv()
        _pv = -self.notional * self.tranche_factor * (pl + cl)
        if self.index_type == "BS":
            if self.value_date < next_twentieth(self._trade_date):
                stub = (
                    cds_accrued(self._trade_date, self.tranche_running * 1e-4)
                    * self.notional
                )
                _pv -= stub
        return _pv

    @property
    def clean_pv(self):
        return self.pv + self.notional * self._accrued

    def _pv(self, epsilon=0.0):
        """ computes coupon leg, protection leg and bond price.

        coupon leg is *dirty*.
        bond price is *clean*."""
        cl = np.zeros(2)
        pl = np.zeros(2)

        i = 0
        for rho, k in zip(self.rho, self.K):
            cl[i], pl[i], _ = self.tranche_legs(k, rho, epsilon)
            i += 1
        dK = np.diff(self.K)
        pl = np.diff(pl) / dK
        cl = np.diff(cl) / dK * self.tranche_running * 1e-4
        return float(pl), float(cl)

    @property
    def spread(self):
        pl, cl = self._pv()
        return -pl / self.duration

    @property
    def upfront(self):
        """returns protection upfront in points"""
        pl, cl = self._pv()
        return -100 * (pl + cl - self._accrued)

    @property
    def price(self):
        pl, cl = self._pv()
        return 100 * (1 + pl + cl - self._accrued)

    @upfront.setter
    def upfront(self, upf):
        def aux(rho):
            self.rho[1] = rho
            return self.upfront - upf

        self.rho[1], r = brentq(aux, 0, 1, full_output=True)
        print(r.converged)

    def reset_pv(self):
        self._original_clean_pv = self.clean_pv
        self._trade_date = self.value_date

    def singlename_spreads(self):
        d = {}
        for k, w, c in self._index.items():
            recov = c.recovery_rates[0]
            d[(k[0], k[1].name, k[2].name)] = (
                w,
                c.par_spread(
                    self.value_date,
                    self._index.step_in_date,
                    self._index.start_date,
                    [self.maturity],
                    c.recovery_rates[0:1],
                    self._index.yc,
                )[0],
                recov,
            )
        df = pd.DataFrame.from_dict(d).T
        df.columns = ["weight", "spread", "recovery"]
        df.index.names = ["ticker", "seniority", "doc_clause"]
        df.spread *= 10000
        return df

    @property
    def pnl(self):
        if self._original_clean_pv is None:
            raise ValueError("original pv not set")
        else:
            # TODO: handle factor change
            days_accrued = (self.value_date - self._trade_date).days / 360
            return (
                self.clean_pv
                - self._original_clean_pv
                + self.tranche_running * 1e-4 * days_accrued
            )

    def __repr__(self):
        s = [
            f"{self.index_type}{self.series} {self.tenor} Tranche",
            "",
            "{:<20}\t{:>15}".format("Value Date", f"{self.value_date:%m/%d/%y}"),
            "{:<20}\t{:>15}".format("Direction", self.direction),
        ]
        rows = [
            ["Notional", self.notional, "PV", (self.upfront, self.tranche_running)],
            ["Attach", self.attach, "Detach", self.detach],
            ["Attach Corr", self.rho[0], "Detach Corr", self.rho[1]],
            ["Delta", self.delta, "Gamma", self.gamma],
        ]
        format_strings = [
            [None, "{:,.0f}", None, "{:,.2f}% + {:.2f}bps"],
            [None, "{:.2f}", None, "{:,.2f}"],
            [
                None,
                lambda corr: f"{corr * 100:.3f}%" if corr else "N/A",
                None,
                lambda corr: f"{corr * 100:.3f}%" if corr else "N/A",
            ],
            [None, "{:.3f}", None, "{:.3f}"],
        ]
        s += build_table(rows, format_strings, "{:<20}{:>19}\t\t{:<19}{:>16}")
        return "\n".join(s)

    def shock(self, params=["pnl"], *, spread_shock, corr_shock, **kwargs):
        orig_rho = self.rho
        r = []
        actual_params = [p for p in params if hasattr(self, p)]
        orig_curves = self._index.curves
        for ss in spread_shock:
            self._index.tweak_portfolio(ss, self.maturity, False)
            for corrs in corr_shock:
                # also need to map skew
                self.rho = [None if rho is None else rho + corrs for rho in orig_rho]
                r.append([getattr(self, p) for p in actual_params])
            self._index.curves = orig_curves
        self.rho = orig_rho
        return pd.DataFrame.from_records(
            r,
            columns=actual_params,
            index=pd.MultiIndex.from_product(
                [spread_shock, corr_shock], names=["spread_shock", "corr_shock"]
            ),
        )

    def mark(self, **args):
        if "spread" in args:
            spread = args["spread"]
        else:
            if not self.index_type == "BS":
                col_ref = "close_price" if self.index_type == "HY" else "close_spread"
                sql_query = (
                    f"SELECT {col_ref} from index_quotes_pre "
                    "WHERE date=%s and index=%s and series=%s and "
                    "tenor=%s and source=%s"
                )
                conn = serenitas_engine.raw_connection()
                with conn.cursor() as c:
                    c.execute(
                        sql_query,
                        (
                            self.value_date,
                            self.index_type,
                            self.series,
                            self.tenor,
                            args.get("source", "MKIT"),
                        ),
                    )
                    try:
                        ref, = c.fetchone()
                    except TypeError:
                        raise MissingDataError(
                            f"{type(self).__name__}: No market quote for date {self.value_date}"
                        )
        try:
            self._index.tweak([ref])
        except NameError:
            pass

        if "skew" in args:
            self._skew = args["skew"]
        else:
            d = self.value_date
            i = 0
            while i < 5:
                try:
                    self._skew = Skew.from_desc(
                        self.index_type, self.series, self.tenor, value_date=d
                    )
                except MissingDataError as e:
                    logger.warning(str(e))
                    d -= bus_day
                    logger.info(f"trying {d}")
                    i += 1
                else:
                    break
        moneyness_eq = self.K / self.expected_loss()
        self.rho = self._skew(moneyness_eq)

    def jump_to_default(self, skew):
        curves = self._index.curves
        orig_factor, orig_cumloss = self._index.factor, self._index.cumloss
        orig_upf = self.tranche_factor * self.upfront
        r = []
        tickers = []
        rho_orig = self.rho
        for weight, curve in curves:
            self._index.curves = [
                (w, c) if c.full_ticker != curve.full_ticker else (w, None)
                for w, c in curves
            ]
            L = (1 - curve.recovery_rates[0]) * weight * orig_factor
            self._index._cumloss = orig_cumloss + L
            self._index._factor = orig_factor * (1 - weight)
            self.K = adjust_attachments(
                self.K_orig, self._index.cumloss, self._index.factor
            )
            self.mark(skew=skew)
            upf = self.tranche_factor * self.upfront
            # we allocate the loss to the different tranches
            loss = (
                np.diff(np.clip(self.K, None, L)) / np.diff(self.K_orig) * orig_factor
            )
            upf += float(loss)
            r.append(upf)
            tickers.append(curve.ticker)
        self._index._factor, self._index._cumloss = orig_factor, orig_cumloss
        self.K = self.K = adjust_attachments(
            self.K_orig, self._index.cumloss, self._index.factor
        )
        self._index.curves = curves
        self.rho = rho_orig
        r = r - orig_upf
        return pd.Series(r / 100, index=tickers)

    @property
    def tranche_factor(self):
        return (
            (self.K[1] - self.K[0])
            / (self.K_orig[1] - self.K_orig[0])
            * self._index.factor
        )

    @property
    def duration(self):
        return (self._pv()[1] - self._accrued) / (self.tranche_running * 1e-4)

    @property
    def hy_equiv(self):
        risk = (
            self.notional
            * self.delta
            * float(self._index.duration())
            / analytics._ontr.risky_annuity
        )
        if self.index_type not in ["HY", "BS"]:
            risk *= analytics._beta[self.index_type]
        return risk

    @property
    def delta(self):
        calc = self._greek_calc()
        factor = self.tranche_factor / self._index.factor
        return (
            (calc["bp"][1] - calc["bp"][2])
            / (calc["indexbp"][1] - calc["indexbp"][2])
            * factor
        )

    def theta(self, method="ATM", skew=None):
        if self.maturity + relativedelta(years=-1) < self.value_date:
            raise ValueError("less than one year left")

        def aux(x, K2, shortened):
            if x == 0.0 or x == 1.0:
                newrho = x
            else:
                newrho = skew(x / el)
            return (
                self.expected_loss_trunc(x, rho=newrho) / el
                - self.expected_loss_trunc(K2, newrho, shortened) / el2
            )

        def find_upper_bound(k, shortened):
            k2 = k
            while aux(k2, k, shortened) < 0:
                k2 *= 1.1
                if k2 > 1.0:
                    raise ValueError("Can't find reasonnable bracketing interval")
            return k2

        if skew is None:
            skew = el, skew_fun = self._skew
        else:
            el, skew_fun = skew

        pv_orig = self.pv
        rho_orig = self.rho
        el2 = self.expected_loss(shortened=4)
        if method == "ATM":
            moneyness_eq = self.K / el2
        elif method == "TLP":
            moneyness_eq = []
            for k in self.K:
                if k == 0.0 or k == 1.0:
                    moneyness_eq.append(k / el)
                else:
                    kbound = find_upper_bound(k, 4)
                    moneyness_eq.append(brentq(aux, 0.0, kbound, (k, 4)) / el)
        self.rho = skew(moneyness_eq)
        self.maturity += relativedelta(years=-1)
        r = self.pv - pv_orig
        self.rho = rho_orig
        self.maturity += relativedelta(years=1)
        return r / abs(self.notional) + self.tranche_running * 1e-4

    def expected_loss(self, discounted=True, shortened=0):
        if shortened > 0:
            DP = self._default_prob()[:, :-shortened]
            df = self.cs.df.values[:-shortened]
        else:
            DP = self._default_prob()
            df = self.cs.df.values

        ELvec = self._index.weights * (1 - self._index.recovery_rates) @ DP
        if not discounted:
            return ELvec[-1]
        else:
            return np.diff(np.hstack((0.0, ELvec))) @ df

    @memoize(hasher=lambda args: (hash(args[0]._index), *args[1:]))
    def expected_loss_trunc(self, K, rho=None, shortened=0):
        if rho is None:
            rho = self._skew(K)
        if shortened > 0:
            DP = self._default_prob()[:, :-shortened]
            df = self.cs.df.values[:-shortened]
        else:
            DP = self._default_prob()
            df = self.cs.df.values
        ELt, _ = BCloss_recov_trunc(
            DP,
            self._index.weights,
            self._index.recovery_rates,
            rho,
            K,
            self._Z,
            self._w,
            self._Ngrid,
        )
        return -np.dot(np.diff(np.hstack((K, ELt))), df)

    @property
    def gamma(self):
        calc = self._greek_calc()
        factor = self.tranche_factor / self._index.factor
        deltaplus = (
            (calc["bp"][3] - calc["bp"][0])
            / (calc["indexbp"][3] - calc["indexbp"][0])
            * factor
        )
        delta = (
            (calc["bp"][1] - calc["bp"][2])
            / (calc["indexbp"][1] - calc["indexbp"][2])
            * factor
        )
        return (deltaplus - delta) / (calc["indexbp"][1] - calc["indexbp"][0]) / 100

    def _greek_calc(self):
        eps = 1e-4
        indexbp = [self.tranche_legs(1.0, None, 0.0).bond_price]
        pl, cl = self._pv()
        bp = [pl + cl]
        for tweak in [eps, -eps, 2 * eps]:
            indexbp.append(self.tranche_legs(1.0, None, tweak).bond_price)
            pl, cl = self._pv(tweak)
            bp.append(pl + cl)
        return {"indexbp": indexbp, "bp": bp}


class TrancheBasket(BasketIndex):
    _Legs = namedtuple("Legs", "coupon_leg, protection_leg, bond_price")

    def __init__(
        self,
        index_type: str,
        series: int,
        tenor: str,
        *,
        value_date: pd.Timestamp = pd.Timestamp.today().normalize(),
    ):
        super().__init__(index_type, series, [tenor], value_date=value_date)
        self.tenor = tenor
        index_desc = self.index_desc.reset_index("maturity").set_index("tenor")
        self.maturity = index_desc.loc[tenor].maturity.date()
        try:
            self._get_tranche_quotes(value_date)
        except ValueError as e:
            raise ValueError(
                f"no tranche quotes available for date {value_date}"
            ) from e
        self.K_orig = np.hstack((0.0, self.tranche_quotes.detach)) / 100
        self.K = adjust_attachments(self.K_orig, self.cumloss, self.factor)
        self._Ngh = 250
        self._Ngrid = 301
        self._Z, self._w = GHquad(self._Ngh)
        self.rho = np.full(self.K.size, np.nan)
        self.cs = credit_schedule(
            value_date, self.tenor[:-1], 1, self.yc, self.maturity
        )

    def _get_tranche_quotes(self, value_date):
        if isinstance(value_date, datetime.datetime):
            value_date = value_date.date()
        df = get_tranche_quotes(self.index_type, self.series, self.tenor, value_date)
        if df.empty:
            raise ValueError
        else:
            self.tranche_quotes = df
        if self.index_type == "HY":
            self.tranche_quotes["quotes"] = (
                1 - self.tranche_quotes.trancheupfrontmid / 100
            )
        else:
            self.tranche_quotes["quotes"] = self.tranche_quotes.trancheupfrontmid / 100
        self.tranche_quotes["running"] = self.tranche_quotes.trancherunningmid * 1e-4
        if self.index_type == "XO":
            coupon = 500 * 1e-4
            self.tranche_quotes.quotes.iat[3] = self._snacpv(
                self.tranche_quotes.running.iat[3], coupon, 0.4, self.maturity
            )
            self.tranche_quotes.running = coupon

        if self.index_type == "EU":
            if self.series >= 21:
                coupon = 100 * 1e-4
                for i in [2, 3]:
                    self.tranche_quotes.quotes.iat[i] = self._snacpv(
                        self.tranche_quotes.running.iat[i],
                        coupon,
                        0.0 if i == 2 else 0.4,
                        self.maturity,
                    )
                    self.tranche_quotes.running.iat[i] = coupon
            elif self.series == 9:
                for i in [3, 4, 5]:
                    coupon = 25 * 1e-4 if i == 5 else 100 * 1e-4
                    recov = 0.4 if i == 5 else 0
                    self.tranche_quotes.quotes.iat[i] = self._snacpv(
                        self.tranche_quotes.running.iat[i], coupon, recov, self.maturity
                    )
                    self.tranche_quotes.running.iat[i] = coupon
        self._accrued = np.array(
            [cds_accrued(self.value_date, r) for r in self.tranche_quotes.running]
        )
        self.tranche_quotes.quotes -= self._accrued

    value_date = property(BasketIndex.value_date.__get__)

    @value_date.setter
    def value_date(self, d: pd.Timestamp):
        BasketIndex.value_date.__set__(self, d)
        self.cs = credit_schedule(d, self.tenor[:-1], 1, self.yc, self.maturity)
        self.K = adjust_attachments(self.K_orig, self.cumloss, self.factor)
        try:
            self._get_tranche_quotes(d)
            self._accrued = np.array(
                [cds_accrued(self.value_date, r) for r in self.tranche_quotes.running]
            )
        except ValueError as e:
            raise ValueError(f"no tranche quotes available for date {d}") from e

    @property
    def skew(self) -> Skew:
        return Skew(self.expected_loss(), self._skew)

    def tranche_factors(self):
        return np.diff(self.K) / np.diff(self.K_orig) * self.factor

    def _get_quotes(self, spread=None):
        if spread is not None:
            return {
                self.maturity: self._snacpv(
                    spread * 1e-4,
                    self.coupon(self.maturity),
                    self.recovery,
                    self.maturity,
                )
            }
        refprice = self.tranche_quotes.indexrefprice.iat[0]
        refspread = self.tranche_quotes.indexrefspread.iat[0]
        if refprice is not None:
            return {self.maturity: 1 - refprice / 100}
        if refspread is not None:
            return {
                self.maturity: self._snacpv(
                    refspread * 1e-4,
                    self.coupon(self.maturity),
                    self.recovery,
                    self.maturity,
                )
            }
        raise ValueError("ref is missing")

    @property
    def default_prob(self):
        sm, tickers = super().survival_matrix(
            self.cs.index.values.astype("M8[D]").view("int") + 134774
        )
        return pd.DataFrame(1 - sm, index=tickers, columns=self.cs.index)

    def tranche_legs(self, K, rho, complement=False, shortened=0, zero_recovery=False):
        if (K == 0.0 and not complement) or (K == 1.0 and complement):
            return 0.0, 0.0
        elif (K == 1.0 and not complement) or (K == 0.0 and complement):
            return self.index_pv(zero_recovery=zero_recovery)[:-1]
        elif np.isnan(rho):
            raise ValueError("rho needs to be a real number between 0. and 1.")
        else:
            if shortened > 0:
                default_prob = self.default_prob.values[:, :-shortened]
                cs = self.cs[:-shortened]
            else:
                default_prob = self.default_prob.values
                cs = self.cs
            if zero_recovery:
                recovery_rates = np.zeros(self.weights.size)
            else:
                recovery_rates = self.recovery_rates
            L, R = BCloss_recov_dist(
                default_prob,
                self.weights,
                recovery_rates,
                rho,
                self._Z,
                self._w,
                self._Ngrid,
            )
            if complement:
                return tranche_cl(L, R, cs, K, 1.0), tranche_pl(L, cs, K, 1.0)
            else:
                return tranche_cl(L, R, cs, 0.0, K), tranche_pl(L, cs, 0.0, K)

    def jump_to_default(self, zero_recovery=False):
        curves = self.curves
        orig_factor, orig_cumloss = self.factor, self.cumloss
        orig_upfs = (
            self.tranche_factors()
            * self.tranche_pvs(protection=True, zero_recovery=zero_recovery).bond_price
        )
        r = []
        tickers = []
        rho_orig = self.rho
        for weight, curve in curves:
            self.curves = [
                (w, c) if c.ticker != curve.ticker else (w, None) for w, c in curves
            ]
            if zero_recovery:
                L = weight * orig_factor
            else:
                L = (1 - curve.recovery_rates[0]) * weight * orig_factor
            self._cumloss = orig_cumloss + L
            self._factor = orig_factor * (1 - weight)
            self.K = adjust_attachments(self.K_orig, self.cumloss, self.factor)
            Korig_eq = self.K[1:1] / self.expected_loss()
            self.rho = np.hstack([np.nan, expit(self._skew(np.log(Korig_eq))), np.nan])
            upfs = (
                self.tranche_factors()
                * self.tranche_pvs(
                    protection=True, zero_recovery=zero_recovery
                ).bond_price
            )
            # we allocate the loss to the different tranches
            loss = np.diff([0, *(min(k, L) for k in self.K[1:])])
            upfs += loss / np.diff(self.K_orig) * orig_factor
            r.append(upfs)
            tickers.append(curve.ticker)
        self._factor, self._cumloss = orig_factor, orig_cumloss
        self.K = adjust_attachments(self.K_orig, self.cumloss, self.factor)
        self.curves = curves
        self.rho = rho_orig
        r = np.vstack(r)
        r = r - orig_upfs
        return pd.DataFrame(r, index=tickers, columns=self._row_names)

    def tranche_pvs(
        self, protection=False, complement=False, shortened=0, zero_recovery=False
    ):
        """ computes coupon leg, protection leg and bond price.

        coupon leg is *dirty*.
        bond price is *clean*."""
        cl = np.zeros(self.rho.size)
        pl = np.zeros(self.rho.size)
        i = 0
        for rho, k in zip(self.rho, self.K):
            cl[i], pl[i] = self.tranche_legs(
                k, rho, complement, shortened, zero_recovery
            )
            i += 1
        dK = np.diff(self.K)
        pl = np.diff(pl) / dK
        cl = np.diff(cl) / dK * self.tranche_quotes.running.values
        if complement:
            pl *= -1
            cl *= -1
        if protection:
            bp = -pl - cl + self._accrued
        else:
            bp = 1 + pl + cl - self._accrued
        return self._Legs(cl, pl, bp)

    def index_pv(self, discounted=True, shortened=0, zero_recovery=False):
        if shortened > 0:
            DP = self.default_prob.values[:, -shortened]
            df = self.cs.df.values[:-shortened]
            coupons = self.cs.coupons.values[:-shortened]
        else:
            DP = self.default_prob.values
            df = self.cs.df.values
            coupons = self.cs.coupons
        if zero_recovery:
            ELvec = self.weights @ DP
        else:
            ELvec = self.weights * (1 - self.recovery_rates) @ DP
        size = 1 - self.weights @ DP
        sizeadj = 0.5 * (np.hstack((1.0, size[:-1])) + size)
        if not discounted:
            pl = -ELvec[-1]
            cl = coupons @ sizeadj
        else:
            pl = -np.diff(np.hstack((0.0, ELvec))) @ df
            cl = coupons @ (sizeadj * df)
        bp = 1 + cl * self.coupon(self.maturity) + pl
        return self._Legs(cl, pl, bp)

    def expected_loss(self, discounted=True, shortened=0):
        if shortened > 0:
            DP = self.default_prob.values[:, :-shortened]
            df = self.cs.df.values[:-shortened]
        else:
            DP = self.default_prob.values
            df = self.cs.df.values

        ELvec = self.weights * (1 - self.recovery_rates) @ DP
        if not discounted:
            return ELvec[-1]
        else:
            return np.diff(np.hstack((0.0, ELvec))) @ df

    def expected_loss_trunc(self, K, rho=None, shortened=0):
        if rho is None:
            rho = expit(self._skew(log(K / self.expected_loss())))
        if shortened > 0:
            DP = self.default_prob.values[:, :-shortened]
            df = self.cs.df.values[:-shortened]
        else:
            DP = self.default_prob.values
            df = self.cs.df.values
        ELt, _ = BCloss_recov_trunc(
            DP, self.weights, self.recovery_rates, rho, K, self._Z, self._w, self._Ngrid
        )
        return -np.dot(np.diff(np.hstack((K, ELt))), df)

    def probability_trunc(self, K, rho=None, shortened=0):
        if rho is None:
            rho = expit(self._skew(log(K / self.expected_loss())))
        L, _ = BCloss_recov_dist(
            self.default_prob.values[:, -(1 + shortened), np.newaxis],
            self.weights,
            self.recovery_rates,
            rho,
            self._Z,
            self._w,
            self._Ngrid,
        )
        p = np.cumsum(L)
        support = np.linspace(0, 1, self._Ngrid)
        probfun = PchipInterpolator(support, p)
        return probfun(K)

    def tranche_durations(self, complement=False, zero_recovery=False):
        cl = self.tranche_pvs(
            complement=complement, zero_recovery=zero_recovery
        ).coupon_leg
        durations = (cl - self._accrued) / self.tranche_quotes.running
        durations.index = self._row_names
        durations.name = "duration"
        return durations

    def tranche_EL(self, complement=False, zero_recovery=False):
        pl = self.tranche_pvs(
            complement=complement, zero_recovery=zero_recovery
        ).protection_leg
        EL = pd.Series(-pl * np.diff(self.K), index=self._row_names)
        EL.name = "expected_loss"
        return EL

    def tranche_spreads(self, complement=False, zero_recovery=False):
        cl, pl, _ = self.tranche_pvs(complement=complement, zero_recovery=zero_recovery)
        durations = (cl - self._accrued) / self.tranche_quotes.running.values
        return pd.Series(-pl / durations * 1e4, index=self._row_names, name="spread")

    @property
    def _row_names(self):
        """ return pretty row names based on attach-detach"""
        ad = (self.K_orig * 100).astype("int")
        return [f"{a}-{d}" for a, d in zip(ad, ad[1:])]

    def tranche_thetas(
        self, complement=False, shortened=4, method="ATM", zero_recovery=False
    ):
        bp = self.tranche_pvs(
            complement=complement, zero_recovery=zero_recovery
        ).bond_price
        rho_saved = self.rho
        self.rho = self.map_skew(self, method, shortened)
        bpshort = self.tranche_pvs(
            complement=complement, shortened=shortened, zero_recovery=zero_recovery
        ).bond_price
        self.rho = rho_saved
        thetas = bpshort - bp + self.tranche_quotes.running.values
        return pd.Series(thetas, index=self._row_names, name="theta")

    def tranche_fwd_deltas(self, complement=False, shortened=4, method="ATM"):
        index_short = deepcopy(self)
        if shortened > 0:
            index_short.cs = self.cs[:-shortened]
        else:
            index_short.cs = self.cs
        if index_short.cs.empty:
            return pd.DataFrame(
                {"fwd_delta": np.nan, "fwd_gamma": np.nan}, index=self._row_names
            )
        index_short.rho = self.map_skew(index_short, method)
        df = index_short.tranche_deltas()
        df.columns = ["fwd_delta", "fwd_gamma"]
        return df

    def tranche_deltas(self, complement=False, zero_recovery=False):
        eps = 1e-4
        index_list = [self]
        for tweak in [eps, -eps, 2 * eps]:
            tb = deepcopy(self)
            tb.tweak_portfolio(tweak, self.maturity)
            index_list.append(tb)
        bp = np.empty((len(index_list), self.K.size - 1))
        indexbp = np.empty(len(index_list))

        for i, index in enumerate(index_list):
            indexbp[i] = index.index_pv(zero_recovery=zero_recovery).bond_price
            bp[i] = index.tranche_pvs(zero_recovery=zero_recovery).bond_price

        factor = self.tranche_factors() / self.factor
        deltas = (bp[1] - bp[2]) / (indexbp[1] - indexbp[2]) * factor
        deltasplus = (bp[3] - bp[0]) / (indexbp[3] - indexbp[0]) * factor
        gammas = (deltasplus - deltas) / (indexbp[1] - indexbp[0]) / 100
        return pd.DataFrame({"delta": deltas, "gamma": gammas}, index=self._row_names)

    def tranche_corr01(self, eps=0.01, complement=False, zero_recovery=False):
        bp = self.tranche_pvs(
            complement=complement, zero_recovery=zero_recovery
        ).bond_price
        rho_saved = self.rho
        self.rho = np.power(self.rho, 1 - eps)
        corr01 = (
            self.tranche_pvs(
                complement=complement, zero_recovery=zero_recovery
            ).bond_price
            - bp
        )
        self.rho = rho_saved
        return corr01

    def build_skew(self, skew_type="bottomup"):
        assert skew_type == "bottomup" or skew_type == "topdown"
        dK = np.diff(self.K)

        def aux(rho, obj, K, quote, spread, complement):
            cl, pl = obj.tranche_legs(K, rho, complement)
            return pl + cl * spread + quote

        if skew_type == "bottomup":
            r = range(0, len(dK) - 1)
        elif skew_type == "topdown":
            r = range(-1, -len(dK), -1)
        skew_is_topdown = skew_type == "topdown"
        for j in r:
            cl, pl = self.tranche_legs(
                self.K[j], self.rho[j], complement=skew_is_topdown
            )
            q = (
                self.tranche_quotes.quotes.iat[j] * dK[j]
                - pl
                - cl * self.tranche_quotes.running.iat[j]
            )
            nextj = j - 1 if skew_is_topdown else j + 1
            try:
                x0, r = brentq(
                    aux,
                    0.0,
                    1.0,
                    args=(
                        self,
                        self.K[nextj],
                        q,
                        self.tranche_quotes.running.iat[j],
                        skew_is_topdown,
                    ),
                    full_output=True,
                )
            except ValueError as e:
                raise ValueError(f"can't calibrate skew at attach {self.K[nextj]}")
            if r.converged:
                self.rho[nextj] = x0
            else:
                print(r.flag)
                break

        self._skew = CubicSpline(
            np.log(self.K[1:-1] / self.expected_loss()),
            logit(self.rho[1:-1]),
            bc_type="natural",
        )

    def map_skew(self, index2, method="ATM", shortened=0):
        def aux(x, index1, el1, index2, el2, K2, shortened):
            if x == 0.0 or x == 1.0:
                newrho = x
            else:
                newrho = index1.skew(x)
            assert (
                newrho >= 0.0 and newrho <= 1.0
            ), f"Something went wrong x: {x}, rho: {newrho}"
            return (
                self.expected_loss_trunc(x, rho=newrho) / el1
                - index2.expected_loss_trunc(K2, newrho, shortened) / el2
            )

        def aux2(x, index1, index2, K2, shortened):
            newrho = index1.skew(x)
            assert (
                newrho >= 0 and newrho <= 1
            ), f"Something went wrong x: {x}, rho: {newrho}"
            return np.log(self.probability_trunc(x, newrho)) - np.log(
                index2.probability_trunc(K2, newrho, shortened)
            )

        def find_upper_bound(*args):
            K2 = args[4]
            while aux(K2, *args) < 0:
                K2 *= 1.1
                if K2 > 1.0:
                    raise ValueError("Can't find reasonnable bracketing interval")
            return K2

        if method not in ["ATM", "TLP", "PM"]:
            raise ValueError("method needs to be one of 'ATM', 'TLP' or 'PM'")

        if method in ["ATM", "TLP"]:
            el1 = self.expected_loss()
            el2 = index2.expected_loss(shortened=shortened)

        if method == "ATM":
            moneyness1_eq = index2.K[1:-1] / el2
        elif method == "TLP":
            moneyness1_eq = []
            for K2 in index2.K[1:-1]:
                b = find_upper_bound(self, el1, index2, el2, K2, shortened)
                moneyness1_eq.append(
                    brentq(aux, 0.0, b, (self, el1, index2, el2, K2, shortened)) / el1
                )
        elif method == "PM":
            moneyness1_eq = []
            for K2 in index2.K[1:-1]:
                # need to figure out a better way of setting the bounds
                moneyness1_eq.append(
                    brentq(
                        aux2,
                        K2 * 0.1 / el1,
                        K2 * 2.5 / el1,
                        (self, index2, K2, shortened),
                    )
                )
        return np.hstack([np.nan, self.skew(moneyness1_eq), np.nan])