1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
from .basket_index import BasketIndex
from .db import _engine
from .tranche_functions import (
credit_schedule, adjust_attachments, cds_accrued, GHquad, BCloss_recov_dist,
tranche_cl, tranche_pl)
from .index_data import get_singlenames_curves, get_tranche_quotes
from pyisda.cdsone import upfront_charge
from pandas.tseries.offsets import BDay
from scipy.optimize import brentq
import pandas as pd
import numpy as np
class TrancheBasket(BasketIndex):
def __init__(self, index_type: str, series: int, tenor: str, *,
trade_date: pd.Timestamp=pd.Timestamp.today().normalize()):
super().__init__(index_type, series, [tenor], trade_date=trade_date)
self.tranche_quotes = get_tranche_quotes(index_type, series, tenor, trade_date.date())
index_desc = self.index_desc.reset_index('maturity').set_index('tenor')
self.maturity = index_desc.loc[tenor].maturity
self.start_date, self.cs = credit_schedule(trade_date, tenor[:-1], 1, self.yc)
self.K_orig = np.hstack((0., self.tranche_quotes.detach)) / 100
self.K = adjust_attachments(self.K_orig, self.cumloss, self.factor)
if index_type == "HY":
self.tranche_quotes['quotes'] = 1 - self.tranche_quotes.trancheupfrontmid / 100
else:
self.tranche_quotes['quotes'] = self.tranche_quotes.trancheupfrontmid / 100
self.tranche_quotes['running'] = self.tranche_quotes.trancherunningmid * 1e-4
if index_type == "XO":
coupon = 500 * 1e-4
self.tranche_quotes.quotes.iat[3] = self._snacpv(self.tranche_quotes.running.iat[3],
coupon,
0.4)
self.tranche_quotes.running = coupon
if index_type == "EU":
if series >= 21:
coupon = 100 * 1e-4
for i in [2, 3]:
self.tranche_quotes.quotes.iat[i] = self._snacpv(
self.tranche_quotes.running.iat[i],
coupon,
0. if i == 2 else 0.4)
self.tranche_quotes.running.iat[i] = coupon
elif series == 9:
for i in [3, 4, 5]:
coupon = 25 * 1e-4 if i == 5 else 100 * 1e-4
recov = 0.4 if i == 5 else 0
self.tranche_quotes.quotes.iat[i] = self._snacpv(
self.tranche_quotes.running.iat[i],
coupon,
recov)
self.tranche_quotes.running.iat[i] = coupon
accrued = cds_accrued(self.trade_date, self.tranche_quotes.running)
self.tranche_quotes.quotes -= accrued
self._Ngh = 250
self._Ngrid = 201
self._Z, self._w = GHquad(self._Ngh)
def _get_quotes(self):
refprice = self.tranche_quotes.indexrefprice.iat[0]
refspread = self.tranche_quotes.indexrefspread.iat[0]
if refprice is not None:
return {self.maturity: 1 - refprice / 100}
if refspread is not None:
return {self.maturity:
self._snacpv(refspread * 1e-4, self.coupon(self.maturity), self.recovery)}
raise ValueError("ref is missing")
def _snacpv(self, spread, coupon, recov):
return upfront_charge(self.trade_date, self.value_date, self.start_date,
self.step_in_date, self.start_date, self.maturity,
coupon, self.yc, spread, recov)
@property
def default_prob(self):
return 1 - super().survival_matrix(self.cs.index.values.astype('M8[D]').view('int') + 134774)
def tranche_legs(self, K, rho, complement=False):
if ((K == 0. and not complement) or (K == 1. and complement)):
return 0., 0.
elif ((K == 1. and not complement) or (K == 0. and complement)):
return self.index_pv()[:-1]
else:
L, R = BCloss_recov_dist(self.default_prob,
self.weights,
self.recovery_rates,
rho,
self._Z, self._w, self._Ngrid)
if complement:
return tranche_cl(L, R, self.cs, K, 1.), tranche_pl(L, self.cs, K, 1.)
else:
return tranche_cl(L, R, self.cs, 0., K), tranche_pl(L, self.cs, 0., K)
def index_pv(self, discounted=True):
ELvec = (self.weights * (1 - self.recovery_rates) @ \
self.default_prob)
size = 1 - self.weights @ self.default_prob
sizeadj = 0.5 * (np.hstack((1., size[:-1])) + size)
if not discounted:
pl = - ELvec[-1]
cl = self.cs.coupons.values() @ sizeadj
else:
pl = - np.diff(np.hstack((0., ELvec))) @ self.cs.df.values
cl = self.cs.coupons.values @ (sizeadj * self.cs.df.values)
bp = 1 + cl * self.coupon(self.maturity) + pl
return cl, pl, bp
@property
def recovery_rates(self):
return np.array([c.recovery_rates[0] for c in self.curves])
def build_skew(self, skew_type="bottomup"):
assert(skew_type == "bottomup" or skew_type == "topdown")
rhovec = np.full(self.K.size, np.nan)
dK = np.diff(self.K)
def aux(rho, obj, K, quote, spread, complement):
cl, pl = obj.tranche_legs(K, rho, complement)
return pl + cl * spread + quote
if skew_type == "bottomup":
for j in range(len(dK) - 1):
cl, pl = self.tranche_legs(self.K[j], rhovec[j])
q = self.tranche_quotes.quotes.iat[j] * dK[j] - \
pl - cl * self.tranche_quotes.running.iat[j]
x0, r = brentq(aux, 0., 1.,
args=(self, self.K[j+1], q, self.tranche_quotes.running.iat[j], False),
full_output=True)
if r.converged:
rhovec[j+1] = x0
else:
print(r.flag)
break
elif skew_type == "topdown":
for j in range(len(dK) - 1, 0, -1):
cl, pl = self.tranche_legs(self.K[j+1], rhovec[j+1])
q = self.tranche_quotes.quotes.iat[j] * dK[j] - \
pl - cl * self.tranche_quotes.running.iat[j]
x0, r = brentq(aux, 0., 1.,
args=(self, self.K[j], q, self.tranche_quotes.running.iat[j], False),
full_output=True)
if r.converged:
rhovec[j+1] = x0
else:
print(res.flag)
break
return rhovec
|