aboutsummaryrefslogtreecommitdiffstats
path: root/python/analytics/tranche_basket.py
blob: 6681b53fb45296cf40bf2ed72f0b7f1794404d69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
from .basket_index import BasketIndex
from .tranche_functions import (
    credit_schedule, adjust_attachments, GHquad, BCloss_recov_dist,
    BCloss_recov_trunc, tranche_cl, tranche_pl)
from .index_data import get_tranche_quotes
from cityhash import CityHash64
from collections import namedtuple
from copy import deepcopy
from lru import LRU
from pyisda.date import cds_accrued
from scipy.optimize import brentq
from scipy.interpolate import CubicSpline, PchipInterpolator
from scipy.special import logit, expit
import datetime
import pandas as pd
import numpy as np

_cache = LRU(64)
def BCloss_recov_dist_cached(default_prob,
                             weights,
                             recovery_rates,
                             rho,
                             Z, w, Ngrid):
    h = CityHash64(default_prob.T) ^ CityHash64(weights) ^ \
        CityHash64(recovery_rates) ^ hash(rho)
    if h in _cache:
        return _cache[h]
    else:
        _cache[h] = BCloss_recov_dist(default_prob,
                                      weights,
                                      recovery_rates,
                                      rho,
                                      Z, w, Ngrid)
        return _cache[h]

class DualCorrTranche(BasketIndex):
    def __init__(self, index_type: str, series: int, tenor: str, *,
                 attach: float, detach: float, corr_attach: float,
                 corr_detach: float, tranche_running: float,
                 notional: float=10_000_000,
                 value_date: pd.Timestamp=pd.Timestamp.today().normalize()):
        super().__init__(index_type, series, [tenor], value_date=value_date)
        self.tenor = tenor
        self.K_orig = np.array([attach, detach]) / 100
        self.attach, self.detach = attach, detach
        self.K = adjust_attachments(self.K_orig, self.cumloss, self.factor)
        self._Ngh = 250
        self._Ngrid = 201
        self._Z, self._w = GHquad(self._Ngh)
        self.rho = np.array([corr_attach, corr_detach])
        self.notional = notional
        self.tranche_running = tranche_running
        self._direction = -1. if notional > 0 else 1.
        self.start_date, self.cs = credit_schedule(value_date, self.tenor[:-1],
                                                   1., self.yc)
        self.default_prob, _ = super().survival_matrix(self.cs.index.values.astype('M8[D]').
                                                       view('int') + 134774)
        self._accrued = cds_accrued(value_date, self.tranche_running * 1e-4)

    value_date = property(BasketIndex.value_date.__get__)

    @value_date.setter
    def value_date(self, d: pd.Timestamp):
        BasketIndex.value_date.__set__(self, d)
        self.start_date, self.cs = credit_schedule(d, self.tenor[:-1],
                                                   1., self.yc)
        self.default_prob, _ = super().survival_matrix(self.cs.index.values.astype('M8[D]').
                                                       view('int') + 134774)
        self._accrued = cds_accrued(d, self.tranche_running * 1e-4)

    def tranche_legs(self, K, rho):
        if K == 0.:
            return 0., 0.
        elif K == 1.:
            return self.index_pv()[:-1]
        elif np.isnan(rho):
            raise ValueError("rho needs to be a real number between 0. and 1.")
        else:
            L, R = BCloss_recov_dist_cached(self.default_prob,
                                            self.weights,
                                            self.recovery_rates,
                                            rho,
                                            self._Z, self._w, self._Ngrid)
            Legs = namedtuple('TrancheLegs', 'coupon_leg, protection_leg')
        return Legs(tranche_cl(L, R, self.cs, 0., K), tranche_pl(L, self.cs, 0., K))

    @property
    def direction(self):
        if self._direction == -1.:
            return "Buyer"
        else:
            return "Seller"

    @direction.setter
    def direction(self, d):
        if d == "Buyer":
            self._direction = -1.
        elif d == "Seller":
            self._direction = 1.
        else:
            raise ValueError("Direction needs to be either 'Buyer' or 'Seller'")

    @property
    def pv(self):
        """ computes coupon leg, protection leg and bond price.

        coupon leg is *dirty*.
        bond price is *clean*."""
        cl = np.zeros(2)
        pl = np.zeros(2)

        i = 0
        for rho, k in zip(self.rho, self.K):
            cl[i], pl[i] = self.tranche_legs(k, rho)
            i += 1
        dK = np.diff(self.K)
        pl = np.diff(pl) / dK
        cl = np.diff(cl) / dK * self.tranche_running * 1e-4
        bp = 1 + pl + cl - self._accrued
        Pvs = namedtuple('TranchePvs', 'coupon_leg, protection_leg, bond_price')
        return Pvs(cl, pl, bp)

    def reset_pv(self):
        self._original_pv = self.pv.bond_price
        self._trade_date = self._value_date

    def pnl(self):
        if self._original_pv is None:
            raise ValueError("original pv not set")
        else:
            # TODO: handle factor change
            days_accrued = (self.value_date - self._trade_date).days / 360
            return self.notional * self._direction * (self.pv.bond_price - self._original_pv +
                                                      self.tranche_running * days_accrued)

    def shock(self, params=['pnl'], *, corr_shock, kwargs):
        pass

class TrancheBasket(BasketIndex):
    def __init__(self, index_type: str, series: int, tenor: str, *,
                 value_date: pd.Timestamp=pd.Timestamp.today().normalize()):
        super().__init__(index_type, series, [tenor], value_date=value_date)
        self.tenor = tenor
        index_desc = self.index_desc.reset_index('maturity').set_index('tenor')
        self.maturity = index_desc.loc[tenor].maturity.date()
        self._get_tranche_quotes(value_date)
        self.K_orig = np.hstack((0., self.tranche_quotes.detach)) / 100
        self.K = adjust_attachments(self.K_orig, self.cumloss, self.factor)
        self._Ngh = 250
        self._Ngrid = 201
        self._Z, self._w = GHquad(self._Ngh)
        self.rho = np.full(self.K.size, np.nan)

    def _get_tranche_quotes(self, value_date):
        self.start_date, self.cs = credit_schedule(value_date, self.tenor[:-1],
                                                   1, self.yc, self.maturity)
        if isinstance(value_date, datetime.datetime):
            value_date = value_date.date()
        df = get_tranche_quotes(self.index_type, self.series,
                                self.tenor, value_date)
        if df.empty:
            raise ValueError
        else:
            self.tranche_quotes = df
        if self.index_type == "HY":
            self.tranche_quotes['quotes'] = 1 - self.tranche_quotes.trancheupfrontmid / 100
        else:
            self.tranche_quotes['quotes'] = self.tranche_quotes.trancheupfrontmid / 100
        self.tranche_quotes['running'] = self.tranche_quotes.trancherunningmid * 1e-4
        if self.index_type == "XO":
            coupon = 500 * 1e-4
            self.tranche_quotes.quotes.iat[3] = self._snacpv(
                self.tranche_quotes.running.iat[3], coupon, 0.4)
            self.tranche_quotes.running = coupon

        if self.index_type == "EU":
            if self.series >= 21:
                coupon = 100 * 1e-4
                for i in [2, 3]:
                    self.tranche_quotes.quotes.iat[i] = self._snacpv(
                        self.tranche_quotes.running.iat[i],
                        coupon,
                        0. if i == 2 else 0.4)
                    self.tranche_quotes.running.iat[i] = coupon
            elif self.series == 9:
                for i in [3, 4, 5]:
                    coupon = 25 * 1e-4 if i == 5 else 100 * 1e-4
                    recov = 0.4 if i == 5 else 0
                    self.tranche_quotes.quotes.iat[i] = self._snacpv(
                        self.tranche_quotes.running.iat[i],
                        coupon,
                        recov)
                    self.tranche_quotes.running.iat[i] = coupon
        self._accrued = np.array([cds_accrued(self.value_date, r)
                                  for r in self.tranche_quotes.running])
        self.tranche_quotes.quotes -= self._accrued

    value_date = property(BasketIndex.value_date.__get__)

    @value_date.setter
    def value_date(self, d: pd.Timestamp):
        BasketIndex.value_date.__set__(self, d)
        try:
            self._get_tranche_quotes(d)
        except ValueError as e:
            self._accrued = np.array([cds_accrued(self.value_date, r)
                                      for r in self.tranche_quotes.running])
            raise ValueError(f"no tranche quotes available for date {d}") from e


    def tranche_factors(self):
        return np.diff(self.K) / np.diff(self.K_orig) * self.factor

    def _get_quotes(self, spread=None):
        if spread is not None:
            return {self.maturity:
                    self._snacpv(spread * 1e-4, self.coupon(self.maturity), self.recovery)}
        refprice = self.tranche_quotes.indexrefprice.iat[0]
        refspread = self.tranche_quotes.indexrefspread.iat[0]
        if refprice is not None:
            return {self.maturity: 1 - refprice / 100}
        if refspread is not None:
            return {self.maturity:
                    self._snacpv(refspread * 1e-4, self.coupon(self.maturity), self.recovery)}
            raise ValueError("ref is missing")

    @property
    def default_prob(self):
        sm, tickers = super().survival_matrix(self.cs.index.values.astype('M8[D]').view('int') + 134774)
        return pd.DataFrame(1 - sm, index=tickers, columns=self.cs.index)

    def tranche_legs(self, K, rho, complement=False, shortened=0):
        if ((K == 0. and not complement) or (K == 1. and complement)):
            return 0., 0.
        elif ((K == 1. and not complement) or (K == 0. and complement)):
            return self.index_pv()[:-1]
        elif np.isnan(rho):
            raise ValueError("rho needs to be a real number between 0. and 1.")
        else:
            if shortened > 0:
                default_prob = self.default_prob.values[:,:-shortened]
                cs = self.cs[:-shortened]
            else:
                default_prob = self.default_prob.values
                cs = self.cs
            L, R = BCloss_recov_dist(default_prob,
                                     self.weights,
                                     self.recovery_rates,
                                     rho,
                                     self._Z, self._w, self._Ngrid)
            Legs = namedtuple('TrancheLegs', 'coupon_leg, protection_leg')
            if complement:
                return Legs(tranche_cl(L, R, cs, K, 1.), tranche_pl(L, cs, K, 1.))
            else:
                return Legs(tranche_cl(L, R, cs, 0., K), tranche_pl(L, cs, 0., K))

    def tranche_pvs(self, protection=False, complement=False, shortened=0):
        """ computes coupon leg, protection leg and bond price.

        coupon leg is *dirty*.
        bond price is *clean*."""
        cl = np.zeros(self.rho.size)
        pl = np.zeros(self.rho.size)
        i = 0
        for rho, k in zip(self.rho, self.K):
            cl[i], pl[i] = self.tranche_legs(k, rho, complement, shortened)
            i += 1
        dK = np.diff(self.K)
        pl = np.diff(pl) / dK
        cl = np.diff(cl) / dK * self.tranche_quotes.running.values
        if complement:
            pl *= -1
            cl *= -1
        if protection:
            bp = -pl - cl + self._accrued
        else:
            bp = 1 + pl + cl - self._accrued
        Pvs = namedtuple('TranchePvs', 'coupon_leg, protection_leg, bond_price')
        return Pvs(cl, pl, bp)

    def index_pv(self, discounted=True, shortened=0):
        if shortened > 0:
            DP = self.default_prob.values[:,-shortened]
            df = self.cs.df.values[:-shortened]
            coupons = self.cs.coupons.values[:-shortened]
        else:
            DP = self.default_prob.values
            df = self.cs.df.values
            coupons = self.cs.coupons
        ELvec = self.weights * (1 - self.recovery_rates) @ DP
        size = 1 - self.weights @ DP
        sizeadj = 0.5 * (np.hstack((1., size[:-1])) + size)
        if not discounted:
            pl = - ELvec[-1]
            cl = coupons  @ sizeadj
        else:
            pl = - np.diff(np.hstack((0., ELvec))) @ df
            cl = coupons @ (sizeadj * df)
        bp = 1 + cl * self.coupon(self.maturity) + pl
        Pvs = namedtuple('IndexPvs', 'coupon_leg, protection_leg, bond_price')
        return Pvs(cl, pl, bp)

    def expected_loss(self, discounted=True, shortened=0):
        if shortened > 0:
            DP = self.default_prob.values[:,:-shortened]
            df = self.cs.df.values[:-shortened]
        else:
            DP = self.default_prob.values
            df = self.cs.df.values

        ELvec = self.weights * (1 - self.recovery_rates) @ DP
        if not discounted:
            return ELvec[-1]
        else:
            return np.diff(np.hstack((0., ELvec))) @ df

    def expected_loss_trunc(self, K, rho=None, shortened=0):
        if rho is None:
            rho = expit(self._skew(logit(K)))
        if shortened > 0:
            DP = self.default_prob.values[:,:-shortened]
            df = self.cs.df.values[:-shortened]
        else:
            DP = self.default_prob.values
            df = self.cs.df.values
        ELt, _ = BCloss_recov_trunc(DP,
                                    self.weights,
                                    self.recovery_rates,
                                    rho,
                                    K,
                                    self._Z, self._w, self._Ngrid)
        return - np.dot(np.diff(np.hstack((K, ELt))), df)

    def probability_trunc(self, K, rho=None, shortened=0):
        if rho is None:
            rho = expit(self._skew(logit(K)))
        L, _ = BCloss_recov_dist(self.default_prob.values[:,-(1+shortened),np.newaxis],
                                 self.weights,
                                 self.recovery_rates,
                                 rho,
                                 self._Z, self._w, self._Ngrid)
        p = np.cumsum(L)
        support = np.linspace(0, 1, self._Ngrid)
        probfun = PchipInterpolator(support, p)
        return probfun(K)

    def tranche_durations(self, complement=False):
        cl = self.tranche_pvs(complement=complement).coupon_leg
        durations = (cl - self._accrued) / self.tranche_quotes.running
        durations.index = self._row_names
        durations.name = 'duration'
        return durations

    def tranche_spreads(self, complement=False):
        cl, pl, _ = self.tranche_pvs(complement=complement)
        durations = (cl - self._accrued) / self.tranche_quotes.running.values
        return pd.Series(-pl / durations * 1e4, index=self._row_names, name='spread')

    @property
    def _row_names(self):
        """ return pretty row names based on attach-detach"""
        ad = (self.K_orig * 100).astype('int')
        return [f"{a}-{d}" for a, d in zip(ad, ad[1:])]

    def tranche_thetas(self, complement=False, shortened=4, method='ATM'):
        bp = self.tranche_pvs(complement=complement).bond_price
        rho_saved = self.rho
        self.rho = self.map_skew(self, method, shortened)
        bpshort = self.tranche_pvs(complement=complement, shortened=shortened).bond_price
        self.rho = rho_saved
        thetas = bpshort - bp + self.tranche_quotes.running.values
        return pd.Series(thetas, index=self._row_names, name='theta')

    def tranche_fwd_deltas(self, complement=False, shortened=4, method='ATM'):
        index_short = deepcopy(self)
        if shortened > 0:
            index_short.cs = self.cs[:-shortened]
        else:
            index_short.cs = self.cs
        index_short.rho = self.map_skew(index_short, method)
        df = index_short.tranche_deltas()
        df.columns = ['fwd_delta', 'fwd_gamma']
        return df

    def tranche_deltas(self, complement=False):
        eps = 1e-4
        self._Ngrid = 301
        index_list = [self]
        for tweak in [eps, -eps, 2*eps]:
            tb = deepcopy(self)
            tb.tweak_portfolio(tweak, self.maturity)
            index_list.append(tb)
        bp = np.empty((len(index_list), self.K.size - 1))
        indexbp = np.empty(len(index_list))

        for i, index in enumerate(index_list):
            indexbp[i] = index.index_pv().bond_price
            bp[i] = index.tranche_pvs().bond_price

        factor = self.tranche_factors() / self.factor
        deltas = (bp[1] - bp[2]) / (indexbp[1] - indexbp[2]) * factor
        deltasplus = (bp[3] - bp[0]) / (indexbp[3] - indexbp[0]) * factor
        gammas = (deltasplus - deltas) / (indexbp[1] - indexbp[0]) / 100
        return pd.DataFrame({'delta': deltas, 'gamma': gammas},
                            index=self._row_names)

    def build_skew(self, skew_type="bottomup"):
        assert(skew_type == "bottomup" or skew_type == "topdown")
        dK = np.diff(self.K)

        def aux(rho, obj, K, quote, spread, complement):
            cl, pl = obj.tranche_legs(K, rho, complement)
            return pl + cl * spread + quote

        if skew_type == "bottomup":
            for j in range(len(dK) - 1):
                cl, pl = self.tranche_legs(self.K[j], self.rho[j])
                q = self.tranche_quotes.quotes.iat[j] * dK[j] - \
                    pl - cl * self.tranche_quotes.running.iat[j]
                x0, r = brentq(aux, 0., 1.,
                               args=(self, self.K[j+1], q, self.tranche_quotes.running.iat[j], False),
                               full_output=True)
                if r.converged:
                    self.rho[j+1] = x0
                else:
                    print(r.flag)
                    break
        elif skew_type == "topdown":
            for j in range(len(dK) - 1, 0, -1):
                cl, pl = self.tranche_legs(self.K[j+1], self.rho[j+1])
                q = self.tranche_quotes.quotes.iat[j] * dK[j] - \
                    pl - cl * self.tranche_quotes.running.iat[j]
                x0, r = brentq(aux, 0., 1.,
                               args=(self, self.K[j], q, self.tranche_quotes.running.iat[j], False),
                               full_output=True)
                if r.converged:
                    self.rho[j+1] = x0
                else:
                    print(res.flag)
                    break
        self._skew = CubicSpline(logit(self.K[1:-1]),
                                 logit(self.rho[1:-1]), bc_type='natural')

    def map_skew(self, index2, method="ATM", shortened=0):
        def aux(x, index1, el1, index2, el2, K2, shortened):
            if x == 0. or x == 1.:
                newrho = x
            else:
                newrho = expit(index1._skew(logit(x)))
            assert newrho >= 0 and newrho <= 1, "Something went wrong"
            return self.expected_loss_trunc(x, rho=newrho) / el1 - \
                index2.expected_loss_trunc(K2, newrho, shortened) / el2

        def aux2(x, index1, index2, K2, shortened):
            newrho = expit(index1._skew(logit(x)))
            assert newrho >= 0 and newrho <=1, "Something went wrong"
            return np.log(self.probability_trunc(x, newrho)) - \
                np.log(index2.probability_trunc(K2, newrho, shortened))

        if method not in ["ATM", "TLP", "PM"]:
            raise ValueError("method needs to be one of 'ATM', 'TLP' or 'PM'")

        if method in ["ATM", "TLP"]:
            el1 = self.expected_loss()
            el2 = index2.expected_loss(shortened=shortened)

        if method == "ATM":
            K1eq = el1 / el2 * index2.K[1:-1]
        elif method == "TLP":
            K1eq = []
            for K2 in index2.K[1:-1]:
                K1eq.append(brentq(aux, 0., 1., (self, el1, index2, el2, K2, shortened)))
            K1eq = np.array(K1eq)
        elif method == "PM":
            K1eq = []
            for K2 in index2.K[1:-1]:
                # need to figure out a better way of setting the bounds
                K1eq.append(brentq(aux2, K2 * 0.1, K2 * 2.5,
                                   (self, index2, K2, shortened)))

        return np.hstack([np.nan, expit(self._skew(logit(K1eq))), np.nan])