1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
from .basket_index import BasketIndex
from .db import _engine
from .tranche_functions import (
credit_schedule, adjust_attachments, cds_accrued, GHquad, BCloss_recov_dist,
BCloss_recov_trunc, tranche_cl, tranche_pl)
from .index_data import get_singlenames_curves, get_tranche_quotes
from copy import deepcopy
from pyisda.cdsone import upfront_charge
from pandas.tseries.offsets import BDay
from scipy.optimize import brentq
from scipy.interpolate import CubicSpline, PchipInterpolator
from scipy.special import logit, expit
import concurrent.futures
import pandas as pd
import numpy as np
class TrancheBasket(BasketIndex):
def __init__(self, index_type: str, series: int, tenor: str, *,
trade_date: pd.Timestamp=pd.Timestamp.today().normalize()):
super().__init__(index_type, series, [tenor], trade_date=trade_date)
self.tranche_quotes = get_tranche_quotes(index_type, series, tenor, trade_date.date())
index_desc = self.index_desc.reset_index('maturity').set_index('tenor')
self.maturity = index_desc.loc[tenor].maturity
self.start_date, self.cs = credit_schedule(trade_date, tenor[:-1], 1, self.yc, self.maturity)
self.K_orig = np.hstack((0., self.tranche_quotes.detach)) / 100
self.K = adjust_attachments(self.K_orig, self.cumloss, self.factor)
if index_type == "HY":
self.tranche_quotes['quotes'] = 1 - self.tranche_quotes.trancheupfrontmid / 100
else:
self.tranche_quotes['quotes'] = self.tranche_quotes.trancheupfrontmid / 100
self.tranche_quotes['running'] = self.tranche_quotes.trancherunningmid * 1e-4
if index_type == "XO":
coupon = 500 * 1e-4
self.tranche_quotes.quotes.iat[3] = self._snacpv(
self.tranche_quotes.running.iat[3], coupon, 0.4)
self.tranche_quotes.running = coupon
if index_type == "EU":
if series >= 21:
coupon = 100 * 1e-4
for i in [2, 3]:
self.tranche_quotes.quotes.iat[i] = self._snacpv(
self.tranche_quotes.running.iat[i],
coupon,
0. if i == 2 else 0.4)
self.tranche_quotes.running.iat[i] = coupon
elif series == 9:
for i in [3, 4, 5]:
coupon = 25 * 1e-4 if i == 5 else 100 * 1e-4
recov = 0.4 if i == 5 else 0
self.tranche_quotes.quotes.iat[i] = self._snacpv(
self.tranche_quotes.running.iat[i],
coupon,
recov)
self.tranche_quotes.running.iat[i] = coupon
accrued = cds_accrued(self.trade_date, self.tranche_quotes.running)
self.tranche_quotes.quotes -= accrued
self._Ngh = 250
self._Ngrid = 201
self._Z, self._w = GHquad(self._Ngh)
self.rho = np.full(self.K.size, np.nan)
def tranche_factors(self):
return np.diff(self.K) / np.diff(self.K_orig) * self.factor
def _get_quotes(self):
refprice = self.tranche_quotes.indexrefprice.iat[0]
refspread = self.tranche_quotes.indexrefspread.iat[0]
if refprice is not None:
return {self.maturity: 1 - refprice / 100}
if refspread is not None:
return {self.maturity:
self._snacpv(refspread * 1e-4, self.coupon(self.maturity), self.recovery)}
raise ValueError("ref is missing")
def _snacpv(self, spread, coupon, recov):
return upfront_charge(self.trade_date, self.value_date, self.start_date,
self.step_in_date, self.start_date, self.maturity,
coupon, self.yc, spread, recov)
@property
def default_prob(self):
sm, tickers = super().survival_matrix(self.cs.index.values.astype('M8[D]').view('int') + 134774)
return pd.DataFrame(1 - sm, index=tickers, columns=self.cs.index)
def tranche_legs(self, K, rho, complement=False, shortened=0):
if ((K == 0. and not complement) or (K == 1. and complement)):
return 0., 0.
elif ((K == 1. and not complement) or (K == 0. and complement)):
return self.index_pv()[:-1]
else:
if shortened > 0:
default_prob = self.default_prob.values[:,:-shortened]
cs = self.cs[:-shortened]
else:
default_prob = self.default_prob.values
cs = self.cs
L, R = BCloss_recov_dist(default_prob,
self.weights,
self.recovery_rates,
rho,
self._Z, self._w, self._Ngrid)
if complement:
return tranche_cl(L, R, cs, K, 1.), tranche_pl(L, cs, K, 1.)
else:
return tranche_cl(L, R, cs, 0., K), tranche_pl(L, cs, 0., K)
def tranche_pvs(self, protection=False, complement=False, shortened=0):
cl = np.zeros(self.rho.size)
pl = np.zeros(self.rho.size)
i = 0
for rho, k in zip(self.rho, self.K):
cl[i], pl[i] = self.tranche_legs(k, rho, complement, shortened)
i += 1
dK = np.diff(self.K)
pl = np.diff(pl) / dK
cl = np.diff(cl) / dK * self.tranche_quotes.running.values
if complement:
pl *= -1
cl *= -1
if protection:
bp = -pl -cl
else:
bp = 1 + pl + cl
return cl, pl, bp
def index_pv(self, discounted=True, shortened=0):
if shortened > 0:
DP = self.default_prob.values[:,-shortened]
df = self.cs.df.values[:-shortened]
coupons = self.cs.coupons.values[:-shortened]
else:
DP = self.default_prob.values
df = self.cs.df.values
coupons = self.cs.coupons
ELvec = self.weights * (1 - self.recovery_rates) @ DP
size = 1 - self.weights @ DP
sizeadj = 0.5 * (np.hstack((1., size[:-1])) + size)
if not discounted:
pl = - ELvec[-1]
cl = coupons @ sizeadj
else:
pl = - np.diff(np.hstack((0., ELvec))) @ df
cl = coupons @ (sizeadj * df)
bp = 1 + cl * self.coupon(self.maturity) + pl
return cl, pl, bp
def expected_loss(self, discounted=True, shortened=0):
if shortened > 0:
DP = self.default_prob.values[:,:-shortened]
df = self.cs.df.values[:-shortened]
else:
DP = self.default_prob.values
df = self.cs.df.values
ELvec = self.weights * (1 - self.recovery_rates) @ DP
if not discounted:
return ELvec[-1]
else:
return np.diff(np.hstack((0., ELvec))) @ df
def expected_loss_trunc(self, K, rho=None, shortened=0):
if rho is None:
rho = expit(self._skew(logit(K)))
if shortened > 0:
DP = self.default_prob.values[:,:-shortened]
df = self.cs.df.values[:-shortened]
else:
DP = self.default_prob.values
df = self.cs.df.values
ELt, _ = BCloss_recov_trunc(DP,
self.weights,
self.recovery_rates,
rho,
K,
self._Z, self._w, self._Ngrid)
return - np.dot(np.diff(np.hstack((K, ELt))), df)
def probability_trunc(self, K, rho=None, shortened=0):
if rho is None:
rho = expit(self._skew(logit(K)))
L, _ = BCloss_recov_dist(self.default_prob.values[:,-(1+shortened),np.newaxis],
self.weights,
self.recovery_rates,
rho,
self._Z, self._w, self._Ngrid)
p = np.cumsum(L)
support = np.linspace(0, 1, self._Ngrid)
probfun = PchipInterpolator(support, p)
return probfun(K)
@property
def recovery_rates(self):
return np.array([c.recovery_rates[0] for c in self.curves])
def tranche_durations(self, complement=False):
cl, _, _ = self.tranche_pvs(complement=complement)
durations = (cl - cds_accrued(self.trade_date, self.tranche_quotes.running)) / \
self.tranche_quotes.running
durations.index = self._row_names
durations.name = 'duration'
return durations
@property
def _row_names(self):
""" return pretty row names based on attach-detach"""
ad = (self.K_orig * 100).astype('int')
return [f"{a}-{d}" for a, d in zip(ad, ad[1:])]
def tranche_thetas(self, complement=False, shortened=4, method='ATM'):
_, _, bp = self.tranche_pvs(complement=complement)
rho_saved = self.rho
self.rho = self.map_skew(self, method, shortened)
_, _, bpshort = self.tranche_pvs(complement=complement, shortened=shortened)
self.rho = rho_saved
thetas = bpshort - bp + self.tranche_quotes.running.values
return pd.Series(thetas, index=self._row_names, name='theta')
def tranche_fwd_deltas(self, complement=False, shortened=4, method='ATM'):
index_short = deepcopy(self)
if shortened > 0:
index_short.cs = self.cs[:-shortened]
else:
index_short.cs = self.cs
index_short.rho = self.map_skew(index_short, method)
df = index_short.tranche_deltas()
df.columns = ['fwd_delta', 'fwd_gamma']
return df
def tranche_deltas(self, complement=False):
eps = 1e-4
self._Ngrid = 301
index_list = [self]
for tweak in [eps, -eps, 2*eps]:
tb = deepcopy(self)
tb.tweak_portfolio(tweak, self.maturity)
index_list.append(tb)
bp = np.empty((len(index_list), self.K.size - 1))
indexbp = np.empty(len(index_list))
for i, index in enumerate(index_list):
indexbp[i] = index.index_pv()[2]
bp[i] = index.tranche_pvs()[2]
factor = self.tranche_factors() / self.factor
deltas = (bp[1] - bp[2]) / (indexbp[1] - indexbp[2]) * factor
deltasplus = (bp[3] - bp[0]) / (indexbp[3] - indexbp[0]) * factor
gammas = (deltasplus - deltas) / (indexbp[1] - indexbp[0]) / 100
return pd.DataFrame({'delta': deltas, 'gamma': gammas},
index=self._row_names)
def build_skew(self, skew_type="bottomup"):
assert(skew_type == "bottomup" or skew_type == "topdown")
dK = np.diff(self.K)
def aux(rho, obj, K, quote, spread, complement):
cl, pl = obj.tranche_legs(K, rho, complement)
return pl + cl * spread + quote
if skew_type == "bottomup":
for j in range(len(dK) - 1):
cl, pl = self.tranche_legs(self.K[j], self.rho[j])
q = self.tranche_quotes.quotes.iat[j] * dK[j] - \
pl - cl * self.tranche_quotes.running.iat[j]
x0, r = brentq(aux, 0., 1.,
args=(self, self.K[j+1], q, self.tranche_quotes.running.iat[j], False),
full_output=True)
if r.converged:
self.rho[j+1] = x0
else:
print(r.flag)
break
elif skew_type == "topdown":
for j in range(len(dK) - 1, 0, -1):
cl, pl = self.tranche_legs(self.K[j+1], self.rho[j+1])
q = self.tranche_quotes.quotes.iat[j] * dK[j] - \
pl - cl * self.tranche_quotes.running.iat[j]
x0, r = brentq(aux, 0., 1.,
args=(self, self.K[j], q, self.tranche_quotes.running.iat[j], False),
full_output=True)
if r.converged:
self.rho[j+1] = x0
else:
print(res.flag)
break
self._skew = CubicSpline(logit(self.K[1:-1]),
logit(self.rho[1:-1]), bc_type='natural')
def map_skew(self, index2, method="ATM", shortened=0):
def aux(x, index1, el1, index2, el2, K2, shortened):
if x == 0. or x == 1.:
newrho = x
else:
newrho = expit(index1._skew(logit(x)))
assert newrho >= 0 and newrho <= 1, "Something went wrong"
return self.expected_loss_trunc(x, rho=newrho) /el1 - \
index2.expected_loss_trunc(K2, newrho, shortened) / el2
def aux2(x, index1, index2, K2, shortened):
newrho = expit(index1._skew(logit(x)))
assert newrho >= 0 and newrho <=1, "Something went wrong"
return np.log(self.probability_trunc(x, newrho)) - \
np.log(index2.probability_trunc(K2, newrho, shortened))
if method not in ["ATM", "TLP", "PM"]:
raise ValueError("method needs to be one of 'ATM', 'TLP' or 'PM'")
if method in ["ATM", "TLP"]:
el1 = self.expected_loss()
el2 = index2.expected_loss(shortened=shortened)
if method == "ATM":
K1eq = el1 / el2 * index2.K[1:-1]
elif method == "TLP":
K1eq = []
for K2 in index2.K[1:-1]:
K1eq.append(brentq(aux, 0., 1., (self, el1, index2, el2, K2, shortened)))
K1eq = np.array(K1eq)
elif method == "PM":
K1eq = []
for K2 in index2.K[1:-1]:
# need to figure out a better way of setting the bounds
K1eq.append(brentq(aux2, K2 * 0.1, K2 * 2.5,
(self, index2, K2, shortened)))
return np.hstack([np.nan, expit(self._skew(logit(K1eq))), np.nan])
|