1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
import datetime
import pandas as pd
import numpy as np
from dates import bond_cal
from . import serenitas_engine, serenitas_pool
from .utils import tenor_t
def get_tranche_quotes(
index=None,
series=None,
tenor=None,
from_date=None,
end_date=None,
years=3,
remove_holidays=True,
):
args = locals().copy()
del args["remove_holidays"]
if args["end_date"] is None:
args["end_date"] = datetime.date.today()
if args["years"] is not None:
args["from_date"] = (args["end_date"] - pd.DateOffset(years=years)).date()
del args["years"]
def make_str(key, val):
col_key = key
if isinstance(val, list) or isinstance(val, tuple):
op = "IN"
return "{} IN %({})s".format(key, key)
elif key == "from_date":
col_key = "date"
op = ">="
elif key == "end_date":
col_key = "date"
op = "<="
else:
op = "="
return "{} {} %({})s".format("d." + col_key, op, key)
where_clause = " AND ".join(
make_str(k, v) for k, v in args.items() if v is not None
)
sql_str = (
"SELECT * from "
"(SELECT quotedate as date, b.index, b.series, a.tenor, b.version, "
"a.attach, a.detach, (1-upfront_mid) as close_price, a.index_price, indexfactor/100 as indexfactor, "
"cumulativeloss, c.delta, a.tranche_spread "
"from markit_tranche_quotes a "
"left join index_version b using (basketid)"
"inner join risk_numbers c on a.quotedate=date(c.date) "
"and b.index=c.index and b.series=c.series and "
"a.tenor=c.tenor and a.attach=c.attach) d "
)
if where_clause:
sql_str = " WHERE ".join([sql_str, where_clause])
def make_params(args):
return {
k: tuple(v) if isinstance(v, list) else v
for k, v in args.items()
if v is not None
}
df = pd.read_sql_query(
sql_str,
serenitas_engine,
parse_dates={"date"},
index_col=["date", "index", "series", "version"],
params=make_params(args),
)
df.tenor = df.tenor.astype(tenor_t)
df = df.set_index("tenor", append=True)
df.sort_index(inplace=True)
df = df.assign(
attach_adj=lambda x: np.maximum(
(x.attach - x.cumulativeloss) / (x.indexfactor * 100), 0
),
detach_adj=lambda x: np.minimum(
(x.detach - x.cumulativeloss) / (x.indexfactor * 100), 1
),
orig_thickness=lambda x: (x.detach - x.attach) / 100,
adj_thickness=lambda x: x.detach_adj - x.attach_adj,
tranche_factor=lambda x: x.adj_thickness * x.indexfactor / x.orig_thickness,
)
df.set_index("attach", append=True, inplace=True)
# get rid of US holidays
if remove_holidays:
dates = df.index.levels[0]
if index in ["IG", "HY"]:
holidays = bond_cal().holidays(start=dates[0], end=dates[-1])
df = df.loc(axis=0)[dates.difference(holidays), :, :]
return df
def tranche_returns(
df=None, index=None, series=None, tenor=None, from_date=None, end_date=None, years=3
):
"""computes spreads and price returns
Parameters
----------
df : pandas.DataFrame
index : str or List[str], optional
index type, one of 'IG', 'HY', 'EU', 'XO'
series : int or List[int], optional
tenor : str or List[str], optional
tenor in years e.g: '3yr', '5yr'
date : datetime.date, optional
starting date
years : int, optional
limits many years do we go back starting from today.
"""
if df is None:
df = get_tranche_quotes(index, series, tenor, from_date, end_date, years)
df = df.groupby(level=["date", "index", "series", "tenor", "attach"]).nth(0)
coupon_data = pd.read_sql_query(
"SELECT index, series, tenor, coupon * 1e-4 AS coupon "
" FROM index_maturity WHERE coupon is NOT NULL",
serenitas_engine,
index_col=["index", "series", "tenor"],
)
df = df.join(coupon_data)
df["date_1"] = df.index.get_level_values(level="date")
# skip missing dates
returns = []
for i, g in df.groupby(level=["index", "series", "tenor", "attach"]):
g = g.dropna()
day_frac = g["date_1"].transform(
lambda s: s.diff().astype("timedelta64[D]") / 360
)
index_loss = g.cumulativeloss - g.cumulativeloss.shift(1)
tranche_loss = (
(
g.adj_thickness.shift(1) * g.indexfactor.shift(1)
- g.adj_thickness * g.indexfactor
)
/ g.orig_thickness
if g.detach[0] != 100
else 0
)
tranche_return = g.close_price - (
1
- ((1 - g.close_price.shift(1)) * g.tranche_factor.shift(1) - tranche_loss)
/ g.tranche_factor
)
index_return = g.index_price - (
1
- ((1 - g.index_price.shift(1)) * g.indexfactor.shift(1) - index_loss / 100)
/ g.indexfactor
)
tranche_return += day_frac * g.tranche_spread / 10000
index_return += day_frac * g.coupon
delhedged_return = (
tranche_return
- g.delta.shift(1) * index_return * g.indexfactor / g.tranche_factor
)
returns.append(
pd.concat(
[index_return, tranche_return, delhedged_return],
axis=1,
keys=["index_return", "tranche_return", "delhedged_return"],
)
)
df = df.merge(pd.concat(returns), left_index=True, right_index=True, how="left")
df = df.drop(["date_1", "tranche_spread", "detach", "coupon"], axis=1)
return df
|